• 제목/요약/키워드: Used aluminum can

검색결과 646건 처리시간 0.027초

박판판재 경화를 고려한 다이 캠 드라이브의 구조해석 최적화에 대한연구 (A Study on the Structure Analysis Optimization of Die Cam Drive Considering the Thin Plate Hardening)

  • 이종배;김선삼;우창기
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5769-5777
    • /
    • 2015
  • 프레스 가공에서 포밍이나 굽힘 등의 변형에 따라 판재는 가공경화를 발생하게 되며, 판재 경화와 가스 스프링 반력에 의한 캠 성형 과정에서 캠 및 판재의 변형과 미 성형이 발생하게 된다. 본 연구는 알루미늄 판재 성형 과정에서 판재경화를 고려한 응력, 변형이 주어진 판재 물성치와 캠 성형 압력에 맞게 입력 값으로 처리하였다. 그리고 유한요소 해석툴인 Hyperstudy와 Abaqus 연동으로 캠 형상을 비선형적으로 형상 최적화 해석을 수행 했다. 그 결과 판재의 변형이 제거 되면서 허용되는 최대, 최소 응력 범위와 최소 변형을 갖는 조건하에서 캠 형상을 최적화 하였다. 따라서 해석 결과를 통해 응력-변형 곡선과 응력-두께의 정규 분포도를 얻을 수 있었고, 또한 Iteration 처리로 판재 경화와 가스 스프링 반력을 고려한 다이캠 두께에 맞는 응력과 변형에 대한 최적화 형상을 얻을 수 있었다.

적응 뉴로퍼지 추론시스템을 이용한 가공 송전선의 열화등급 진단 (Diagnosis of Deterioration Grades for Overhead Transmission Lines using Adaptive Neuro-Fuzzy Inference System)

  • 김성덕;이상래
    • 조명전기설비학회논문지
    • /
    • 제17권4호
    • /
    • pp.57-63
    • /
    • 2003
  • 가공 송전선로의 아연도금 강심 알루미늄연선 도체들은 장기간 동안 대기오염에 의해 서서히 열화되었기 때문에, 2천년 대에 이르러 수많은 도체들이 예상된 유효수명을 초과하였다. 대부분의 도체들은 경제적인 운용 측면에서 현재 상태들을 평가하지 않으면 안되므로, 이 논문에서는 경년, 환경지표, 및 도체구조와 같은 중요 파라미터들을 사용하여 노화도체의 현재 상태를 평가하기 위한 방법을 제안하였다. 노화도체의 수명에 대응하는 열화등급을 예측하기 위한 진단 방법을 기술하였으며, 이 시스템은 전문가 지식과 경험을 토대로 적응 뉴로퍼지 추론시스템 (Adaptive Neuro-Fuzzy Inference System)으로 설계하였다. 이 진단시스템을 국내의 송전선로에 적용하여, 이 시스템이 노화 ACSR 도체를 비파괴적으로 진단하고 경제적으로 운용하기 위한 방안으로서 효과적으로 사용될 수 있음을 밝혔다.

천식 쥐 모델에서 가마좌귀음이 PPAR-${\gamma}$에 미치는 영향 (Effects of Gami-Choakwiyeum on the PPAR-${\gamma}$ in the Bronchial sthma Mouse Model)

  • 이해자
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1593-1597
    • /
    • 2006
  • We hope to evaluate the effects of Gami-Choakwiyeum (GCKY) on the PPAR-${\gamma}$’ in the OVA induced asthma mouse model. Female BALB/c mice, 8 weeks of age and free of murine specific pathogens were used. Mice were sensitized by intraperitoneal injection of OVA emulsified in aluminum hydroxide in a total volume of 200 ${\mu}{\ell}$ on one day and 14 days. On 21, 22, and 23 days after the initial intraperitoneal injection of OVA, the mice were challenged using an ultrasonic nebulizer. GCKY was administered 7 times by oral gavage at 24 hour intervals fromdays 19 after intraperitoneal injection of OVA. Bronchoalveolar lavage was perfromed 72 hours after the last challenge, and total cell numbers in the BAL fluid were counted. Also, the level of PPAR-${\gamma}$ of normal and OVA-induced asthma moused with/without administration of GCKY were measured by Western blot analysis. For the histologic examination, the specimens were stained with hematoxylin 2 and eosin-Y.(H & E). Numbers of total cells were increased significantly at 72 h after OVA inhalation compared with numbers of total cells in the normal and the administration of GCKY. Especially, the increased numbers of eosinophils in BAL fluids after OVA inhalation were significantly increased. However, the numbers of eosinophils reduced by the administration of GCKY. Western blot analysis revealed that PPAR-${\gamma}$ levels in nuclear level were increased slightly after OVA inhalation compared with the levels in the normal group. After the administration of GCKY, PPAR-${\gamma}$ levels in cytosolic and nuclear levels at 72 h after OVA inhalation were markedly increased. On pathologic examination, there were many acute inflammatory cells around the alveoli, bronchioles, and airway lumen of mice with OVA-induced asthma compared with inflammatory cells in the normal group. However, acute inflammatory cells around alveoli, bronchioles, and airway lumen markedly decreased after administration of GCKY, GCKY can increase a PPAR-${\gamma}$ level and could be an effective treatment in asthma patients through the PPAR-${\gamma}$ mechanism for bronchial asthma.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Consolidation of marine clay using electrical vertical drains

  • Shang, J.Q.;Tang, Q.H.;Xu, Y.Q.
    • Geomechanics and Engineering
    • /
    • 제1권4호
    • /
    • pp.275-289
    • /
    • 2009
  • Electroosmosis (EO) is the movement of water in a porous medium under the influence of a direct current (dc). In past decades, electro-osmosis has been successfully employed in many soil improvement and other geotechnical engineering projects. Metal electrodes, such as steel, copper and aluminum have been used traditionally to conduct current. The shortcoming of these electrodes is that they corrode easily during an EO treatment, which results in reduced effectiveness and environmental concerns. More recently, conductive polymers are developed to replace metal electrodes in EO treatment. Electrical vertical drainages (EVDs) are one of these products under trial. The goal of this study is to assess the performance of EVDs for soil improvement and to further understand the scientific principle of the EO process, including the voltage drop at the soil-EVD interface, electrical current density, polarity reversal, and changes in soil physico-chemical properties generated by electroosmosis. It is found from the study that after 19 days of EO treatment with a constant applied dc electric field intensity of 133 V/m, the soil's moisture content decreased by 28%, the shear strength and pre-consolidation pressure increased more than 400%. It is also found that the current density required triggering the water flow in the soil tested, the Korean Yulchon marine clay, is 0.7 $A/m^2$. The project demonstrates that EVDs can serve as both electrodes and drains for soil improvement in short term. However, the EVDs, as tested, are not suitable for polarity reversal in EO treatment and their service life is limited to only 15 days.

Comparative study of Korean White Ginseng and Korean Red Ginseng on efficacies of OVA-induced asthma model in mice

  • Lim, Chi-Yeon;Moon, Jeong-Min;Kim, Bu-Yeo;Lim, Se-Hyun;Lee, Guem-San;Yu, Hak-Sun;Cho, Su-In
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.38-45
    • /
    • 2015
  • Background: Korean ginseng is a well-known medicinal herb that has been widely used in traditional medicine to treat various diseases, including asthma. Ginseng can be classified as white ginseng (WG) or red ginseng (RG), according to processing conditions. In this study, the authors compared the efficacies of these two ginseng types in a mouse model of acute asthma. Methods: To produce the acute asthma model, BALB/c mice were sensitized with ovalbumin (OVA) and aluminum hydroxide, and then challenged with OVA. WG and RG extracts were administered to mice orally. The influences of WG and RG on airway hyperresponsiveness (AHR), immune cell distributions in bronchoalveolar lavage fluid (BALF), and OVA-specific immunoglobulin E (IgE), IgG1, and IgG2a in serum were investigated. Cytokine production by lymphocytes isolated from peribronchial lymph nodes and histopathological changes was also examined. Results: In OVA-sensitized mice, both WG and RG reduced AHR and suppressed immune cell infiltration in bronchoalveolar regions. BALF OVA-specific IgE levels were significantly lower in RG-treated OVAsensitized mice than in the OVA-sensitized control group. WG and RG also suppressed inflammatory cytokine production by peribronchial lymphocytes. Histopathological findings showed reduced inflammatory cell infiltration and airway remodeling (e.g., epithelial hyperplasia) in WG- and RG-treated OVA mice compared with OVA controls. Conclusion: In this study, WG and RG showed antiasthmatic effects in an OVA-sensitized mouse model, and the efficacies of RG were found to be better than those of WG.

몬테카를로 시뮬레이션 기반 밀도에 따른 다양한 검출기 물질을 적용한 획득 영상 평가 (Evaluation of Image Quality by Using Various Detector Materials according to Density : Monte Carlo Simulation Study)

  • 이나눔;최다솜;이지수;박찬록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권5호
    • /
    • pp.459-464
    • /
    • 2021
  • The detector performance is important role in acquiring the gamma rays from patients. Among parameters of detector performances, there is density, which relates to respond to gamma rays. Therefore, we confirm the detection efficiency according to various detector materials based on the density parameter using GATE (geant4 application for emission tomography) simulation tool. The NaI (density: 3.67 g/cm3), CZT (Cadimium Zinc Telluride) (density: 5.80 g/cm3), CdTe (Cadmium Telluride) (5.85 g/cm3), and GAGG (Gadoinium Aluminum Gallium Garnet) (density g/cm3) were used as detector materials. In addition, the point source and quadrant bar phantom, which is modeled for 0.5, 1.0, 1.5, and 2.0 mm thicknesses, were modeled to confirm the quatitative analysis using sensitivity (cps/MBq) and the full width at half maximum (FWHM, mm) at the 2.0 mm bar thickness containing visual evaluation. Based on the results, the sensitivity for NaI, CZT, CdTe, and GAGG detector materials were 0.12, 0.15, 0.16, and 0.18 cps/MBq. In addition, the FWHM for quadrant bar phantom in the 2.0 mm bar thickness is 3.72, 3.69, 3.70, and 3.73 mm for NaI, CZT, CdTe, and GAGG materials, respectively. Compared with performance of detector materials according to density, the high density can improve detection efficiency in terms of sensitivity and mean count. Among these detector materials, the GAGG material is efficient for detection of gamma rays.

다양한 질소분압에서 펄스레이저법으로 성장된 AlN박막의 특성 (Characterization of AlN Thin Films Grown by Pulsed Laser Deposition with Various Nitrogen Partial Pressure)

  • 정준기;하태권
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.43-48
    • /
    • 2019
  • Aluminum nitride (AlN) is used by the semiconductor industry, and is a compound that is required when manufacturing high thermal conductivity. The AlN films with c-axis orientation and thermal conductivity characteristic were deposited by using the Pulsed Laser Deposition (PLD). The AlN thin films were characterized by changing the deposition conditions. In particular, we have researched the AlN thin film deposited under optimal conditions for growth atmosphere. The epitaxial AlN films were grown on sapphire ($c-Al_2O_3$) single crystals by PLD with AlN target. The AlN films were deposited at a fixed temperature of $650^{\circ}C$, while conditions of nitrogen ($N_2$) pressure were varied between 0.1 mTorr and 10 mTorr. The quality of the AlN films was found to depend strongly on the $N_2$ partial pressure that was exerted during deposition. The X-ray diffraction studies revealed that the integrated intensity of the AlN (002) peak increases as a function the corresponding Full width at half maximum (FWHM) values decreases with lowering of the nitrogen partial pressure. We found that highly c-axis orientated AlN films can be deposited at a substrate temperature of $650^{\circ}C$ and a base pressure of $2{\times}10^{-7}Torr$ in the $N_2$ partial pressure of 0.1 mTorr. Also, it is noted that as the $N_2$ partial pressure decreased, the thermal conductivity increased.

Effectiveness of medical coating materials in decreasing friction between orthodontic brackets and archwires

  • Arici, Nursel;Akdeniz, Berat S.;Oz, Abdullah A.;Gencer, Yucel;Tarakci, Mehmet;Arici, Selim
    • 대한치과교정학회지
    • /
    • 제51권4호
    • /
    • pp.270-281
    • /
    • 2021
  • Objective: The aim of this in vitro study was to evaluate the changes in friction between orthodontic brackets and archwires coated with aluminum oxide (Al2O3), titanium nitride (TiN), or chromium nitride (CrN). In addition, the resistance of the coatings to intraoral conditions was evaluated. Methods: Stainless steel canine brackets, 0.016-inch round nickel-titanium archwires, and 0.019 × 0.025-inch stainless steel archwires were coated with Al2O3, TiN, and CrN using radio frequency magnetron sputtering. The coated materials were examined using scanning electron microscopy, an X-ray diffractometer, atomic force microscopy, and surface profilometry. In addition, the samples were subjected to thermal cycling and in vitro brushing tests, and the effects of the simulated intraoral conditions on the coating structure were evaluated. Results: Coating of the metal bracket as well as nickel-titanium archwire with Al2O3 reduced the coefficients of friction (CoFs) for the bracket-archwire combination (p < 0.01). When the bracket and stainless steel archwire were coated with Al2O3 and TiN, the CoFs were significantly lower (0.207 and 0.372, respectively) than that recorded when this bracket-archwire combination was left uncoated (0.552; p < 0.01). The friction, thermal, and brushing tests did not deteriorate the overall quality of the Al2O3 coatings; however, some small areas of peeling were evident for the TiN coatings, whereas comparatively larger areas of peeling were observed for the CrN coatings. Conclusions: Our findings suggest that the CoFs for metal bracket-archwire combinations used in orthodontic treatment can be decreased by coating with Al2O3 and TiN thin films.

탄소복합재 부품 파티션패널의 구조 강성/강도 신뢰성 평가에 관한 연구 (Study on Structural Reliability Assessment of a Partition Panel Made of a CFRP(Carbon Fiber Reinforced Plastic))

  • 이재진;문지훈;윤원호;강다경;안민수;노형진;강지헌;이재욱
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.68-74
    • /
    • 2019
  • In the case of a partition panel for a vehicle, it is used as a vehicle chassis component that serves to distinguish the indoor and outdoor spaces of a vehicle and is mounted on a backrest portion of the vehicle's back seat to ensure the convenience of passengers by connecting the floor and the side of the vehicle. Because it is a relatively large-sized plate material among automobile chassis parts except the moving parts and non-ferrous materials can be applied, it is considered as a part having a large light-weight effect. However, the partition panel is one of the vehicle parts that must satisfy the light-weight effect as well as various structural reliability, such as torsional rigidity, vibration, and impact characteristics, for securing the running stability of the vehicle when driving at the same time. So, In this study, the possibility of replacing the aluminum partition panel as CFRP(Carbon Fiber Reinforced Plastic) partition panel is evaluated through comparing the two partition panels by using the structural reliability(stiffness/strength analysis), vibration analysis, impact analysis.