DOI QR코드

DOI QR Code

A Study on the Structure Analysis Optimization of Die Cam Drive Considering the Thin Plate Hardening

박판판재 경화를 고려한 다이 캠 드라이브의 구조해석 최적화에 대한연구

  • Lee, Jong-Bae (Div. of Mechanical Engineering, Incheon National University) ;
  • Kim, Seon-Sam (Div. of Mechanical Engineering, Incheon National University) ;
  • Woo, Chang-Ki (Div. of Mechanical Engineering, Incheon National University)
  • Received : 2015.07.16
  • Accepted : 2015.09.11
  • Published : 2015.09.30

Abstract

According to the forming or bending deformation in the press die, the thin plate occurs a work-hardening, the sheet hardening and cam unit's deformation causes incomplete forming during the cam molding process by the reacting spring forces. This study treated the input parameters of the stress and strain as given properties and also used Cam forming pressure considering the sheet hardening in the forming process of the aluminum sheet. The Hyperstudy are operated be linked with the Abaqus of the finite element analysis tool and the shape of Cam were carried out with non-linear shape optimization analysis. As a result removing the deformation of plate, the cam shape were optimized under conditions reduced deformation, having a minimum stress range and the minimum deformation. Therefore, a stress-strain curve and a normal distribution of stress-thickness can be obtained and optimization could be obtained for the shape of the stress and strain on the die plate hardened cam considering the thickness and reaction force of gas spring as iteration process.

프레스 가공에서 포밍이나 굽힘 등의 변형에 따라 판재는 가공경화를 발생하게 되며, 판재 경화와 가스 스프링 반력에 의한 캠 성형 과정에서 캠 및 판재의 변형과 미 성형이 발생하게 된다. 본 연구는 알루미늄 판재 성형 과정에서 판재경화를 고려한 응력, 변형이 주어진 판재 물성치와 캠 성형 압력에 맞게 입력 값으로 처리하였다. 그리고 유한요소 해석툴인 Hyperstudy와 Abaqus 연동으로 캠 형상을 비선형적으로 형상 최적화 해석을 수행 했다. 그 결과 판재의 변형이 제거 되면서 허용되는 최대, 최소 응력 범위와 최소 변형을 갖는 조건하에서 캠 형상을 최적화 하였다. 따라서 해석 결과를 통해 응력-변형 곡선과 응력-두께의 정규 분포도를 얻을 수 있었고, 또한 Iteration 처리로 판재 경화와 가스 스프링 반력을 고려한 다이캠 두께에 맞는 응력과 변형에 대한 최적화 형상을 얻을 수 있었다.

Keywords

References

  1. Junho, Jang. "Nonlinear Analysis and Optimum Design", Keimyung University press , pp.41-42, 2008
  2. Lee, M., Kim, D., Kim, C., Wenner, M. L., Wagoner, R. H. and Chung, K., 2005, "Spring-Back Evaluation of Automotive Sheets Based on Isotropic-kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part II : Characterization of Material Properties," International Journal of Plasticity, Vol. 21, pp. 883-914. DOI: http://dx.doi.org/10.1016/j.ijplas.2004.05.015
  3. Dassault System Simulia, "Abaqus/Explicit Advanced Topics Manual", pp. 321-332, 2013.
  4. Altair Engineering, inc. "HyperStudy Introduction Manual ver12", pp. 295-311,2014.
  5. Altair Engineering, inc. "HyperStudy Introduction Manual", pp. 39-71, 2010.
  6. Yoshida, F. and Uemori, T., 2003, "A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation," International Journal of Mechanical Sciences, Vol. 45, pp. 1687-1702. DOI: http://dx.doi.org/10.1016/j.ijmecsci.2003.10.013
  7. Yoshida, F, Uemori, T. and Fujiwara, K, 2002, "Elastic-lastic Behavior of Steel Sheets under Inplane Cyclic Tension-ompression at Large Strain," International Journal of Plasticity, Vol. 18, pp. 633-659. DOI: http://dx.doi.org/10.1016/S0749-6419(01)00049-3
  8. Dassault System Simulia, "Abaqus Manual Metal Inelasticity in Abaqus", pp. 37-63, 2015.