• Title/Summary/Keyword: Use IoT

Search Result 646, Processing Time 0.032 seconds

IoT Healthcare Communication System for IEEE 11073 PHD and IHE PCD-01 Integration Using CoAP

  • Li, Wei;Jung, Cheolwoo;Park, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1396-1414
    • /
    • 2018
  • With the proliferation of the Internet of Things (IoT) healthcare devices, significant interoperability issue arises where devices use proprietary data transfer protocols. The IHE PCD-01 standard has been suggested for the exchange of healthcare data in ISO/IEEE 11073 PHD data model. However, the PCD-01 is not efficient to be used in the IoT environment. This is because the use of SOAP for PCD-01 may be too complex to be implemented in the resource-constrained IoT healthcare devices. In this paper, we have designed a communication system to implement ISO/IEEE 11073 and IHE PCD-01 integration using the IETF CoAP. More specifically, we have designed the architecture and procedures, using CoAP, to seamlessly transmit the bio-signal from the tiny resource-constrained IoT healthcare devices to the server in a standardized way. We have also built the agent, gateway, and PCD-01 interface at the server, all of which are using the CoAP as a communication protocol. In order to evaluate the performance of the proposed system, we have used the PCD data to be transmitted over CoAP, MQTT, and HTTP. The evaluation of the system performance shows that the use of CoAP results in faster transaction and lesser cost than other protocols, with less battery power consumption.

SDN-Based Collection-path Steering for IoT-Cloud Service Monitoring Data over SmartX-mini Playground (SmartX-mini Playground 상의 IoT-Cloud 서비스에 대한 SDN 기반 모니터링 데이터 수집 경로 설정)

  • Yoon, Heebum;Kim, Seungryong;Kim, JongWon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1598-1607
    • /
    • 2016
  • Safe transmitting monitoring data is essential for supporting IoT-Cloud services efficiently. In this paper, we find ways to configure data path flexibly in SDN based for IoT-Cloud services utilizing SmartX-mini Playground. To do this, we use ONOS(Open Network Operating System) SDN Controller, ONOS NBI Applications made from us to check flexible and safe data path configuration for IoT-Cloud monitoring data transmitting in real IoT-SDN-Cloud environments.

A Virtual File System for IoT Service Platform Based on Linux FUSE (IoT 서비스 플랫폼을 위한 리눅스 FUSE 기반 가상 파일 시스템)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.139-150
    • /
    • 2015
  • The major components of IoT(Internet of Things) environment are IoT devices rather than the conventional desktop computers. One of the intrinsic characteristics of IoT devices is diversity in view of data type and data access method. In addition, IoT devices usually deal with real-time data. In order to use such IoT data for internal business or cloud services, an IoT platform capable of easy domain management and consistent data access interface is required. This paper proposes a Linux FUSE-based virtual file system connecting IoT devices on POSIX file system view. It is possible to manage IoT domain with the native Linux utilities such as mkdir, mknod, ls and find in the file system. Also, the file system makes it possible to access or control IoT devices through POSIX interface such as open(), read(), write() or close() without any separate APIs or utilities. A test result shows that the management performance of the file system is lower than that of linux file system negligibly.

Secret Key-Dimensional Distribution Mechanism Using Deep Learning to Minimize IoT Communication Noise Based on MIMO (MIMO 기반의 IoT 통신 잡음을 최소화하기 위해서 딥러닝을 활용한 비밀키 차원 분배 메커니즘)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.23-29
    • /
    • 2020
  • As IoT devices increase exponentially, minimizing MIMO interference and increasing transmission capacity for sending and receiving IoT information through multiple antennas remain the biggest issues. In this paper, secret key-level distribution mechanism using deep learning is proposed to minimize MIMO-based IoT communication noise. The proposed mechanism minimizes resource loss during transmission and reception process by dispersing IoT information sent and received through multiple antennas in batches using deep learning. In addition, the proposed mechanism applied a multidimensional key distribution processing process to maximize capacity through multiple antenna multiple stream transmission at base stations without direct interference between the APs. In addition, the proposed mechanism synchronizes IoT information by deep learning the frequency of use of secret keys according to the number of IoT information by applying the method of distributing secret keys in dimension according to the number of frequency channels of IoT information in order to make the most of the multiple antenna technology.

The Impact of Privacy Control on Users' Intention to Use Smart Home Internet of Things (IoT) Services

  • Kim, Mingyung;Choi, Bo Reum
    • Asia Marketing Journal
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Despite the diverse benefits of smart home Internet of Things (IoT) services, the biggest obstacle to the actual usage of those services is concern about privacy. However, little research has investigated the impact of privacy control on users' intention to use smart home services. Based on communication privacy management theory and privacy calculus theory, this study investigates how privacy control options affect users' perceived benefits and costs and how those perceptions affect individuals' intentions to use smart home services by conducting an experiment. Our results showed that smart home privacy control options decreased perceived benefits and increased perceived costs. The perceived benefits and costs significantly affected the intention to use smart home security services. More intriguingly, the effect of perceived benefit was found to be stronger than that of the expected cost. This research contributes to the field of IoT and smart home research and provides practitioners with notable guidelines.

The Influence of IoT Technological Characteristics on Expected Achievement and Adoption Intention of SCM: On the Perspectives of Chinese Physical Supply Chain and Distribution Industry (사물인터넷(IoT) 기술특성이 SCM 기대성과 및 도입의도에 미치는 영향에 관한 연구: 중국 물류공급망 및 유통업체를 대상으로)

  • Shang Meng;Yong Ho Shin;Chul Woo Lee;Jun Ho Mun
    • Information Systems Review
    • /
    • v.19 no.3
    • /
    • pp.1-21
    • /
    • 2017
  • The Internet of Things (IoT) analysis aims to verify the technical characteristics, performance expectations, and adoption intentions of IoT. This work refers to IoT data from foreign and domestic publications and websites as well as aims to benefit related organizations by referring to reports from agencies. The literature review summarizes the relevant theories and background of the unified theory of acceptance and use of technology. The SPSS 22.0 software and structural equation models (smart PLS 2.0) are used in the data analysis. Technical statistics analysis, reliability analysis, validity analysis, structural equation models, and statistical methods are employed to test the research hypotheses, that is, the technical characteristics of IoT will have positive effects on its performance expectations. This study introduces the characteristics and expected performance of IoT to present relevant IoT guidelines for companies that aim to adopt such technology.

Ontology Based-Security Issues for Internet of Thing (IoT): Ontology Development

  • Amir Mohamed Talib
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.168-176
    • /
    • 2023
  • The use of sensors and actuators as a form of controlling cyber-physical systems in resource networks has been integrated and referred to as the Internet of Things (IoT). However, the connectivity of many stand-alone IoT systems through the Internet introduces numerous security challenges as sensitive information is prone to be exposed to malicious users. In this paper, IoT based-security issues ontology is proposed to collect, examine, analyze, prepare, acquire and preserve evidence of IoT security issues challenges. Ontology development has consists three main steps, 1) domain, purpose and scope setting, 2) important terms acquisition, classes and class hierarchy conceptualization and 3) instances creation. Ontology congruent to this paper is method that will help to better understanding and defining terms of IoT based-security issue ontology. Our proposed IoT based-security issue ontology resulting from the protégé has a total of 44 classes and 43 subclasses.

A Study on Reinforcing Non-Identifying Personal Sensitive Information Management on IoT Environment (IoT 환경의 비식별 개인 민감정보관리 강화에 대한 연구)

  • Yang, Yoon-Min;Park, Soon-Tai;Kim, Yong-Min
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.34-41
    • /
    • 2020
  • An era of stabilizing IoT markets and rapid expansion is coming. In an IoT environment, communication environments where objects take the lead in communication can occur depending on the situation, and communication with unspecified IoT environments has increased the need for thorough management of personal sensitive information. Although there are benefits that can be gained by changing environment due to IoT, there are problems where personal sensitive information is transmitted in the name of big data without even knowing it. For the safe management of personal sensitive information transmitted through sensors in IoT environment, the government plans to propose measures to enhance information protection in IoT environment as the use of non-identifiable personal information in IoT environment is expected to be activated in earnest through the amendment of the Data 3 Act and the initial collection method.

Intrusion Artifact Acquisition Method based on IoT Botnet Malware (IoT 봇넷 악성코드 기반 침해사고 흔적 수집 방법)

  • Lee, Hyung-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid increase in the use of IoT and mobile devices, cyber criminals targeting IoT devices are also on the rise. Among IoT devices, when using a wireless access point (AP), problems such as packets being exposed to the outside due to their own security vulnerabilities or easily infected with malicious codes such as bots, causing DDoS attack traffic, are being discovered. Therefore, in this study, in order to actively respond to cyber attacks targeting IoT devices that are rapidly increasing in recent years, we proposed a method to collect traces of intrusion incidents artifacts from IoT devices, and to improve the validity of intrusion analysis data. Specifically, we presented a method to acquire and analyze digital forensics artifacts in the compromised system after identifying the causes of vulnerabilities by reproducing the behavior of the sample IoT malware. Accordingly, it is expected that it will be possible to establish a system that can efficiently detect intrusion incidents on targeting large-scale IoT devices.

Secure Group Key Agreement for IoT Environment (사물인터넷(IoT) 환경을 위한 안전한 그룹 키 관리 기법)

  • Lee, Su-Yeon
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.121-127
    • /
    • 2016
  • Recently, the popularity of smart devices such as Wi-Fi and LTE has increased the use ratio of wireless dramatically. On the other hand, the use ratio of wired internet is decreasing. The IoT(Internet of Things) is not only for people but also for communication between people and things, and communication between things and things by connecting to a wireless without choosing a place. Along with the rapid spread of the IoT there is a growing concern about the threat of IoT security. In this paper, the proposed scheme is a efficiency group key agreement in IoT environment that guarantees secure communication among light-weight devices. The proposed scheme securely be able to communication with the group devices who share a group key, generated by own secret value and the public value. Such property is suitable to the environment which are required a local area and a group.