• Title/Summary/Keyword: Urethane foam

Search Result 78, Processing Time 0.029 seconds

The Variations of Temperature and Humidity with the Insultor Materials in Wingtering Beehouse (단열재에 따른 저온양봉사 내부의 온.습도변화)

  • 이석건;김란숙;이현우;이종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.424-428
    • /
    • 1999
  • The simulation and experiments were conducted to anlayzed the vaiation of the temperature and humicity in the wintering beehouses which had two kinds of the insulator materials of urethane foam and sandwich panel individually . It was found that inside temperature of sandwich panel beehouse was similar to the urethane foam at the same outside temperature by the simulation results. The variation of the inside temperature and humidity for the urethane foam was less than the sandwich panel.

  • PDF

Study on the Sewability of Special Fabrics (특수직물의 봉제에 관한 연구)

  • 장지혜
    • Journal of the Korean Home Economics Association
    • /
    • v.11 no.1
    • /
    • pp.26-43
    • /
    • 1973
  • This study was carried out on the Sewbility of Urethane Foam usually used as coldproof lining. The Sewability was estimated with the Puckering Grade and Seam Efficiency according to the thicknes of urethane foam, fineness and material of sewing thread, and the sort of covering fabric. The result shows the following ; 1. The thick foam proportinally shows the low Puckering Grade. 2. Effect on the sewability is small in fineness of sewing thread but large in material. Especially silk thread shows the greatest sewability in foam sewing. When the material of covering fabric is same as that of sewing thread (for example ; p/c fabric and p/c thread) the sewability is excellent in special. 3. Taffeta in covering foam is not suitable to foam sewing, satin and twill show superior sewability without reagrd to the thickness of foam. 4. In case of sewing foam covered with tricot, optimum thickness of foam and fineness of sewing thread through pretest must determine. 5. The thicker foam is the better seam efficiency tends, and Seam Efficiency largely effects to the strength of the sewing thread itself. 6. The seam Efficiency can heighten with the strength of sewing thread in proportion to that of covering fabric.

  • PDF

Sound-Insulation Performance of Aluminum Extruded Panel by Charging Foam in a High-speed Train (고속철도차량용 알루미늄 압출재의 차음성능에 대한 폼 충전효과)

  • Lee, Joong-Hyeok;Park, In-Seok;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.582-585
    • /
    • 2012
  • The aluminum extruded panel used for a high speed train shows the largest contribution to sound insulation performance of the train body. However, comparing with the flat panel having the same weight, the transmission loss falls sharply in the local resonance frequency band. Such fall of transmission loss can be improved by increasing the damping of local resonance. This study examines the charging effect of an urethane foam on the aluminum extruded panel of a high speed train. We charged the urethane foam with different mass density and in different way in the core part of the extruded panel. We measure the transmission loss and compare the sound insulation performance according to the density and charging method. Finally, Improvement effect of the transmission loss is compared and analysed in aspect of weight increment.

  • PDF

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

A Study on the Urethane Foam Material Characteristics and Appropriate Soil Covering for Mine Reclamation Emergency Action through Atificial Fire Test (인공 화재 실험을 통한 광해방지 응급조치용 우레탄 폼 재료 특성 및 적정 복토에 관한 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.287-296
    • /
    • 2020
  • Mine Reclamation Project is being carried out with the aim of ensuring a sustainable green living and helping to develop eco-friendly mines by analyzing, removing and preventing the harmful factors. Mines developed during the japanese colonial period and mining boom period are still not repaired throughout the country, and from these scattered risks, public safety is worth pursuing as a top priority. The project that is close to public safety in the mine recalmation project is an emergency treatment, and the most widely used method is a filling method similar to the ground subsidence prevention. If dangerous mine cavity or tunnels are located in the mountains, charging with existing materials may not be possible, or unreasonable cases may occur, and new methods of technological development are required. Emergency actions should be carried out safely and efficiently to prevent the loss of precious people's lives on the hiking paths adjacent to dangerous mining sites. In these field conditions, urethane foam materials may be an alternative. In this study, the applicability of urethane foam materials in mining was reviewed through overseas cases. It was also tested on the appropriate depth of top soil for the protection of urethane foam materials through forest fire simulation test. The test result show that approximately 15cm of soil covering (recommended 20cm over) was suitable for maintaining the function of foam materials from forest fires.

The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material (샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화)

  • Park, Jun-Seo;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam (폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;신경섭;박진원
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.564-570
    • /
    • 2000
  • The waste FRP occured in the fabrication of SMC (sheet molding compound) bathtubs and the waste polyurethane foam occured in electronic manufacture and waste insulator were applied as a soundproof and light weight pannel in the waste FRP unsaturated polyester matrix resin composites to recycle. The effect of filler contents on the mechanical properties and interfacial phenomena of the filler and matrix on the composites was evaluated. The tensile strength of composites reached its maximum value of 82.34 MPa when the filler content was 70 wt%, and the more content of reinforcement is increased, the more tensile modulus was decreased. The flexural strength and modulus of composites, reinforced 70 wt% with filler content, were dominant compared to the other samples to 72.5 MPa, 958.4 MPa respectively. When composite of reinforced 70 wt% with filler content, it was confirmed that pull out phenomena and cracks did not occur in the interface of reinforcement and matrix resin through the SEM observation. Also, waste FRP and urethane foam were dispersed well into matrix resin as filler.

  • PDF

A New Method for Measuring Characteristic Impedance and Propagation Constant of Sound-Absorbing Materials (흡음재의 특성임피던스와 전파상수의 새로운 결정방법)

  • 황철호;정성수;은희준
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.781-787
    • /
    • 1997
  • A new method is presented to determine two fundamental acoustic quantities of sound-absorbing materials such as characteristic impedance and propagation constant. In this study, the surface acoustic impedances of sound-absorbing materials are measured using the impedance tube and the anechoic chamber to determine the above acoustic quantities. The measured results are given for two typical sound-absorbing materials(glass wool and urethane foam) int the frequency range between 150 and 1, 600 Hz. The results are verified by other two known methods, which are Smith & Parrott method and Utsuno et al. method. The absorption coefficients calculated from the empirical models(Miki model for glass wool and Jung model for urethane foam) and two quantities by present method are in good agreement with the measured values.

  • PDF

A Study on the Density and Thermal Conductivity of Rigid Polyurethane Foam According to Mixing Amount (혼합 양에 따른 경질 폴리우레탄폼의 밀도 및 열전도율에 관한 연구)

  • Shin, Joung-Hyeon;Jo, Su-Yeon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.127-128
    • /
    • 2021
  • Rigid urethane foam is widely applied because it is light and has superior insulation performance compared to insulation materials such as EPS or glass wool. However, it has the disadvantage of being vulnerable to fire. Therefore, in this study, before proceeding with the research to improve the fire resistance of the rigid polyurethane foam, we would like to investigate the change in density and thermal conductivity of the rigid polyurethane foam according to the change in the mixed weight of the main material and the curing agent. It was found that the density increased as the mixed weight increased. The thermal conductivity showed similar values overall. As for the density distribution, the central part was low and the outer part was high.

  • PDF