• Title/Summary/Keyword: Urban air temperature

Search Result 349, Processing Time 0.025 seconds

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

The Analysis of Time Series of SO2 Concentration and the Control Factor in An Urban Area of Yongsan-gu, Seoul (서울시 용산구 지역에 이산화황 농도의 시계열 변동과 영향인자 분석)

  • Kim, Bo-Won;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.543-553
    • /
    • 2014
  • The environmental behavior of $SO_2$ was investigated in terms of the factors affecting the temporal variabilities by analyzing the data sets obtained from the Yongsan district in Seoul from 2004 till 2013. To this end, the relationship between $SO_2$ and relevant parameters including particulate matters (such as $PM_{2.5}$, $PM_{10}$, and TSP (total suspended particulates)) and gaseous components ($CH_4$, CO, THC (total hydrocarbon), NMHC (non-methane hydrocarbon), NO, $NO_2$, NOx, and $O_3$) was investigated in several aspects. Over a decade, the annual mean concentrations of $SO_2$ varied in the range of $4.36-5.86nmole\;mole^{-1}$ (min-max) which was about five times lower than the regulation guideline set for the air quality management in Korea. In fact, this pattern greatly contrasts with some other air pollutants of which concentrations exceeded their guideline values significantly. According to our analysis, $SO_2$ was strongly correlated to the temperature and other relevant parameters. The overall results of this study confirm that the administrative regulation of $SO_2$ levels has been made effectively relative to other airborne pollutants.

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E.;Kanda, Isao;Okazaki, Yukiyo;Wakamatsu, Shinji;Basaldud, Roberto;Horikoshi, Nobuji;Ortinez, Jose A.;Ramos-Benitez, Victor R.;Cardenas, Beatriz
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.114-127
    • /
    • 2015
  • In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

Influence of Land Use and Meteorological Factors for Evapotranspiration Estimation in the Coastal Urban Area (해안도시 지역에서 증발산량 산정에 토지이용도와 기상인자의 영향성)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.295-304
    • /
    • 2010
  • Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude $129^{\circ}$ 05' 40" ~ 129$^{\circ}$ 08' 08" and north latitude $35^{\circ}$ 07' 59" ~ $35^{\circ}$ 11' 01". The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was AET=0.87$\times$PET+3.52 and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was AET=84.73$\times$MWS+223.05 and coefficient of determination was 0.54. The linear regression function of PET as MWS was PET=83.83$\times$MWS+203.62 and coefficient of determination was 0.45.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

A Study on Greenspace Planning Strategies for Thermal Comfort and Energy Savings (열쾌적성과 에너지절약을 위한 녹지계획 전략 연구)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • The purpose of this study is to quantify human energy budgets for different structures of outdoor spatial surfaces affecting thermal comfort, to analyze the impacts of tree shading on building energy savings, and to suggest desirable strategies of urban greenspace planning concerned. Concrete paving and grass spaces without tree shading and compacted-sand spaces with tree shading were selected to reflect archetypal compositional types for outdoor spatial materials. The study then estimated human energy budgets in static activity for the 3 space types. Major determinants of energy budgets were the presence of shading and also the albedo and temperature of base surfaces. The energy budgets for concrete paving and grass spaces without tree shading were $284\;W/m^2$ and $226\;W/m^2$, respectively, and these space types were considerably poor in thermal comfort. Therefore, it is desirable to construct outdoor resting spaces with evapotranspirational shade trees and natural materials for the base plane. Building energy savings from tree shading for the case of Daegu in the southern region were quantified using computer modeling programs and compared with a previous study for Chuncheon in the middle region. Shade trees planted to the west of a building were most effective for annual savings of heating and cooling energy. Plantings of shade trees in the south should be avoided, because they increased heating energy use with cooling energy savings low in both climate regions. A large shade tree in the west and east saved cooling energy by 1~2% across building types and regions. Based on previous studies and these results, some strategies including indicators for urban greenspace planning were suggested to improve thermal comfort of outdoor spaces and to save energy use in indoor spaces. These included thermal comfort in construction materials for outdoor spaces, building energy savings through shading, evapotranspiration and windspeed mitigation by greenspaces, and greenspace areas and volume for air-temperature reductions. In addition, this study explored the application of the strategies to greenspace-related regulations to ensure their effectiveness.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Review of the Modern Values of East and West Moat Culture (동·서양 해자(垓字) 문화의 현대적 가치 재조명)

  • Jung, Yong-Jo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • The purpose of this study is to re-exam of the modern values of a moat to utilize it with various functions such as a military defense on the outskirts of the castle, dividing the space by its boundary, controlling the micro-climate in the worsening modern environment with temperature rise due to climate change and habitat reduction of animals, and providing the habitat of animals to modern urban space, etc. The scope of the study is focusing on the castles with the moat installed to prevent the enemy from accessing directly to the wall using a pond or water path for military defense on the outskirts of the castle or to divide it into boundaries. In the Orient, the Nakan Eupseong, Haemi Eupseong, Gyeongju Wolseong in Korea and the Forbidden City in China, and Nijo Castle and Osaka Castle in Japan were selected. In the West, Edinburgh Castle in Britain, Blois Castle in France, Chillon Castle in Switzerland, and Frederiksborg Castle in Denmark were selected for the study. As a research method, literature research and field research were conducted. For the Orient, it was conducted in parallel with the literature research and field research. For the western, it was mainly conducted with literature research. For the literature research, the origin of the moat, the concept of the moat, the function of the moat, the history and culture of the western moat are based on the data from the related institutions and previous studies. For the Orient field research, exploring was conducted in two to three times from Jan. 2016 to Dec. 2016 in each of the target areas of Nakan Eupseong, Haemi Eupseong, Gyeongju Wolseong in Korea and the Forbidden City in China, and Nijo Castle and Osaka Castle in Japan. The contents of the research were analyzed through interviews, photographs, measurements, and observations on the function, size, and characteristics of the moat of each target. The results of this study are as follows. The moat was a structure installed to set a boundary for military defense facilities on the outskirts of a castle and it played an important role as a part of the city in the ancient times of Asia and the West through the Middle Ages. The role of the moat is gradually disappearing due to the disappearance of the purpose of military defense. However, moats are excluded from modern landscape planning, despite the fact that a moat filled with water is a hydrophilic space with great historical and cultural value such as various cultural activities and providing habitats for animals. By reflecting on the moats various functions in modern cities and utilizing it, it is expected to be utilized to bring pleasant air into the city where the circulation of air is blocked and energize the city as a hydroponic element.