• Title/Summary/Keyword: Urban Gas

Search Result 414, Processing Time 0.022 seconds

A Study on the Improvement of Leak Alarm Reliability of Gas Meter for Leak Inspection according to Boiler Usage Pattern (보일러 사용 패턴에 따른 누출점검용 가스계량기 누출 알람 신뢰도 개선 연구)

  • Jin-Du Yang;Seung-Won Lee;Eun-Il Choi;Sung-Hyeon Lim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.72-76
    • /
    • 2023
  • Among urban gas-using facilities, more and more cases are using gas meters for leakage inspection instead of inspection ports for concealment pipes. Leak alarm alarms were continuously generated according to the boiler's special usage pattern in an environment where there was no actual gas leakage among some households where this meter was installed. It does not perform its original function of detecting actual gas leakage. Based on these problems, this study analyzed the conditions under which the gas meter for leakage inspection generates leakage alarms according to the boiler's special gas use pattern, and sought a set value that can generate an alarm only in the case of actual gas leakage. Through this, it is intended to relieve citizens' anxiety about gas use due to malfunction of the alarm and at the same time perform the original function of the meter that can detect leaking gas.

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관 안전관리 향상방안 연구)

  • Choi, Hyun-Woog;Lee, Dong-Min;Kim, jin-jun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.100-106
    • /
    • 2018
  • pressure buried pipes in domestic industrial estate have many long-term use pipes, Toxic, flammable, Inflammable, etc. as well as a variety of toxic chemicals are embedded in a complex be buried, A high level of safety management is required as it can damage other pipes installed nearby in the event of accidents such as various external interference. Therefore, in this study, the safety management practices of high-pressure gas distribution and urban gas distribution are utilized to derive efficient safety management methods for high-pressure gas installation piping through in-depth comparative analysis.

Estimation of Air Concentrations of PCBs using Passive Air Samplers (PAS) and a Gas/particle Partition Model (Passive Air Sampler (PAS)와 기체/입자 분배모델을 이용한 대기 중 PCB 농도 산정)

  • Baek, Song-Yee;Choi, Sung-Deuk;Chang, Yoon-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.734-743
    • /
    • 2007
  • Polyurethane foam-disk passive air samplers (PAS) were deployed in a southern area of Korea for three months. The target compounds were 12 coplanar polychlorinated biphenyls (PCBs). The congener profiles measured in this study were the same as those in ambient air and emission gas from the incinerator. A gradient of the total PCBs in different regions (industrial>residential>rural) was observed, suggesting the industrial complex may be an important source of coplanar PCBs. In general, only gas-phase compounds are mainly sequestrated by PAS. In order to estimate the concentration of particle-phase PCBs, a gas/particle partition model was used. A combined result (gas+particle-phase PCBs) was compared with previous results, indicating that the level of coplanar PCBs in our study area is comparable to those in other urban sites in the world. The validation of this method for estimating the total concentration is required through additional backup studies.

A Development of Gas Line Safety Management System by GIS (GIS를 이용한 가스관의 안전 관리시스템 개발)

  • 최병길;정영동;김영곤
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2000
  • GIS is the system that has ability of integrating, managing, and analyzing the voluminous graphic and text data, which is adequate system to manage complex network of the underground utilities of urban area. A development of gas line safety management system is accomplished to construct a database of gas line network and topographic data, create safety managing model, and estimate openly its safety by GIS. This system is designed to evaluate easily the damaged facilities in case of gas line explosion by the establishment of the geographic output system. It is designed to trace and present efficiently closed valves and interrupted facilities of gas when gas line breakage occurs, and offer the information by which one can take quickly emergency. And also, it is constructed to prevent from accident occurring under construction work by showing underground utilities and states of work.

  • PDF

GIS based Effective Methodology for GAS Accident Management (GIS를 이용한 효율적인 가스사고관리 방법에 관한 연구)

  • 김태일;김계현;전방진;곽태식
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.89-100
    • /
    • 2004
  • Nowadays, the gas utilities have been increasing constantly due to the expansion of the urban areas. Using computerized information database, the gas companies have developed a gas management system in order to maintain the current status. However, this system can only give basic functions of the maintenance and management of the gas facilities and it has no proper utilities to provide information against accidents from gas leaks. Therefore, a gas accident management system has been developed in this study. Through primary and secondary pipe searching algorithm realtime based management system was devised against gas leaks to propose proper actions. In addition, supporting decision making has been enabled providing estimated maximum amount of gas leaks. Furthermore, all the residential units could be identified thereby minimizing damages through early warning. This system can be expected to contribute to enhance the efficiency of the gas management not to mention of protecting human lives and properties of the nation.

  • PDF

Impacts of Urban Green Spaces on Air Quality (도심지역 녹지의 국지적 대기환경영향에 관한 연구)

  • Joo, Hyun Soo;Kim, Seogcheol
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.386-393
    • /
    • 2009
  • This study was to find out the quantitative relation between urban treed area(neighborhood parks) and the atmosphere environment in real condition, focusing the gas-phase non-reacting air pollutants(SOx and NOx) decreasing function of trees in urban area. It also developed a quantitative analysis method for evaluation of the atmosphere influence in the type of treed areas. We set up the Pagoda Park in Seoul and its neighbourhood as a modelling area to analyse air quality impacts by urban neighbourhood park trees. From the modelling result of the Pagoda Park case study, it is concluded that urban neighbourhood park has an important meaning to suppress construction of emission sources which drive the urban polluted air quality worse, even though park's trees have relatively small air purifying function. Especially in the urban area severely contaminated by air pollutants, the first considered air quality management policy is conservation of green spaces in neighborhood park.

A Study on the Improvement of Safety of Measuring Instrument Structure and Performance by Expansion of Gas AMI (가스 AMI 보급 확대에 따른 계량기 구조 및 성능 안전성 향상 방안 연구)

  • Lee, Hyoung-Min;Kim, Min-Gi;Choi, Eun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.10-15
    • /
    • 2022
  • Currently, some urban gas companies are conducting their own gas AMI meter verification projects, along with the demonstration of gas AMI (Advanced Metering Infrastructure) meters under the supervision of the government. There are many positive factors such as remote meter reading and ensuring user gas safety through AMI meter installation, but on the other hand, there are also many problems such as battery discharge, expensive price, and decreased reliability of remote meter data. This study sought various improvements in gas AMI meters along with prevention of serious civil disasters by preemptively eliminating structural safety problems and potential risks from gas leakage due to the expansion of gas AMI meters, and it is expected that this study will contribute to the government's policy to advance gas AMI.

Exposure Assessment to Asbestos and Diesel Engine Exhaust Particulate Matter in Urban Bus Garage (버스 정비 작업자에 대한 석면 및 디젤 엔진 배출물질 노출 평가)

  • Lee, Naroo;Yi, Gwangyong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.219-224
    • /
    • 2016
  • Objectives: Lung cancer occurred with worker working in an urban bus garage. A survey was conducted to investigate whether lung cancer had causal relationship with work. Exposure to asbestos and diesel engine exhaust were suspected. Methods: Airborne asbestos was sampled on membrane filter and analyzed using phase-contrast microscopy. Airborne diesel exhaust was sampled using quartz filter and analyzed with thermal-optical analyzer. Polynuclear aromatic hydrocarbons was sampled using PTFE filter and XAD-2 tube and analyzed with gas chromatography-mass selective detector. Results: Airborne asbestos concentration was under 0.01 fiber/cc. Worker who warmed up an engine of urban bus for 2 hours was exposed to elemental carbon concentration, $15.5{\mu}g/m^3$. Only naphtalene among polynuclear aromatic hydrocarbons was detected. Conclusions: It was difficult to conclude about worker exposure to asbestos because working hour related asbestos was too short. In reviewing papers, the exposure to asbestos over 0.01 fiber/cc during exchange brake lining was found. It was identified that worker's occupational exposure to diesel exhaust based on elemental carbon was higher than the other occupational exposure to diesel exhaust.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF