• Title/Summary/Keyword: Upper Bound Solution

Search Result 114, Processing Time 0.025 seconds

Calculation of Contact Pressure to the Die of Axisymmetric Extrusion by Using Upper Bound Solution (축대칭 압출 공정에서 상계법을 이용한 금형 접족면압의 계산)

  • Choi Young;Yeo Hong-Tae;Hur Kwando
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.133-139
    • /
    • 2004
  • In general, the contact pressure to the die cannot be easily determined by using upper bound solution. Recently, the authors have proposed the method determining the contact pressure with the upper bound solution for the forming with the plane stain plastic deformation. In this paper, the method is applied to an axisymmetric forward extrusion process. The contact pressure to the die of the axisymmetric extrusion has been determined with the upper bound solution and compared with the result of rigid plastic FEM. The optimal semi-angles of die have been obtained minimizing the relative contact pressure to die fur the extrusion ratio.

New Branching Criteria for the Asymmetric Traveling Salesman Problem (비대칭 외판원 문제를 위한 새로운 분지기법)

  • 지영근;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.9-18
    • /
    • 1996
  • Many algorithms have been developed for optimizing the asymmectric traveling salesman problem known as a representative NP-Complete problem. The most efficient ones of them are branch and bound algorithms based on the subtour elimination approach. To increase efficiency of the branch and bound algorithm. number of decision nodes should be decreased. For this the minimum bound that is more close at the optimal solution should be found or an effective bounding strategy should be used. If the optimal solution has been known, we may apply it usefully to branching. Because a good feasible solution should be found as soon as possible and have similar features of the optimal solution. By the way, the upper bound solution in branch and bound algorithm is most close at the optimal solution. Therefore, the upper bound solution can be used instead of the optimal solution and information of which can be applied to new branching criteria. As mentioned above, this paper will propose an effective branching rule using the information of the upper bound solution in the branch and bound algorithm. And superiority of the new branching rule will be shown by comparing with Bellmore-Malone's one and carpaneto-Toth's one that were already proposed.

  • PDF

An Upper Bound Solution of Tube Drawing (관인발의 상계해석)

  • 엄경근;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.40-47
    • /
    • 1996
  • An upper bound solution of tube drawing process using a fixed tapered plug has been obtained , which reduces to an solution for tube sinking by setting friction factor between tube and plug at zero. Effects of various process paraments have been discussed based on the solution.

  • PDF

An Analysis for Drawing of Strip by UBET with Rigid Elements (강체요소를 이용한 인발 공정의 상계요소 해석)

  • Choi, Il-Kuk;Choi, Young;Hur, Kwan-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.598-603
    • /
    • 2001
  • For metal forming analysis, upper-bound solution is practical method because the solution is overestimated. It is limited to determine stresses on tools by using upper-bound solution. In this study, new scheme to calculate stresses on tools based on upper bound solution is proposed. To verify the proposed scheme, plane strain drawing has been considered. The stresses on tools obtained by the proposed scheme are compared with results of rigid plastic FEM. And the stresses on tools have been determined by the proposed scheme in the forging within plane strain deformation.

  • PDF

A Study on the Drawing of Strip by Upper Bound Elemental Technique (상계요소법에 의한 판재 인발공정에 관한 연구)

  • Hur, K.D.;Choi, Y.;Choi, I.K.
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • For metal forming analysis, upper-bound solution is a practical method because the solution is overestimated. However it is not easy to determine the stresses on dies by using upper-bound solution. In this study, new scheme to calculate the stresses on dies based on upper bound solution is proposed. In the velocity fields, imaginary velocity is adapted to analyze the normal pressure on die surfaces. To verify the proposed scheme. plane strain drawing has been considered. The stresses on dies obtained by the proposed scheme are compared with the results of rigid plastic FEM and the experimental results. In the experiments, pressure film is used to measure the normal pressure on dies.

Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach

  • Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.587-605
    • /
    • 2016
  • This study aimed to develop upper and lower bounds to predict the tunnel support pressure under the pile tip during the circular tunnel excavation. Most previous studies on the upper and lower bound methods were carried out for the single ground structures, e.g., retaining wall, foundation, ground anchor and tunnel, in the homogeneous ground conditions, since the pile-soil-tunnel interaction problem is very complicated and sophisticated to solve using those bound methods. Therefore, in the lower bound approach two appropriate stress fields were proposed for single pile and tunnel respectively, and then they were superimposed. In addition, based on the superimposition several failure mechanisms were proposed for the upper bound solution. Finally, these upper bound mechanisms were examined by shear strain data from the laboratory model test and numerical analysis using finite element method.

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Solving Linear Problems with Generalized Variable Upper Bounds

  • Yang, Kwang-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.171-180
    • /
    • 1992
  • This paper proposes a solution approach to linear problems with many constraints of variable upper bound (VUB) type. This type of constraints are commonly found in various scheduling type problems for which tighter bounds are essential to achieve an efficiency in enumeration. An analytical framework based on factorization is adopted to devise a solution approach to the problem and extend it for more generalized VUB problem (GVUB). This research shows why the VUB type constraints are amenable to the factorization and gives a unified approach to generalized upper bound(GUB) problems, VUB problems and GVUB problems. Implementation issues are also included.

  • PDF

Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect (변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구)

  • Park, Chung-Hee;Ko, Youn-Ki;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

New Upper Matrix Bounds for the Solution of the Continuous Algebraic Riccati Matrix Equation

  • Davies, Richard Keith;Shi, Peng;Wiltshire, Ron
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.776-784
    • /
    • 2008
  • In this paper, new upper matrix bounds for the solution of the continuous algebraic Riccati equation (CARE) are derived. Following the derivation of each bound, iterative algorithms are developed for obtaining sharper solution estimates. These bounds improve the restriction of the results proposed in a previous paper, and are more general. The proposed bounds are always calculated if the stabilizing solution of the CARE exists. Finally, numerical examples are given to demonstrate the effectiveness of the present schemes.