Journal of the Korean
OR/ MS Society
Vol. 17, No. 3, December 1992 171

Solving Linear Problems
with Generalized Variable Upper Bounds'

Kwang Min Yang*

Abstract

This paper proposes a solution approach to linear problems with many constraints of variable
upper bound(VUB) type. This type of constraints are commonly found in various scheduling type
problems for which tighter bounds are essential to achieve an efficiency in enumeration.

An analytical framework based on factorization is adopted to devise a solution approach to the
problem and extend it for more generalized VUB problems(GVUB). This research shows why the
VUB type constraints are amenable to the factorization and gives a unified approach to
generalized upper bound(GUB) problems, VUB problems and GVUB problems. Implementation

issues are also included.

1. Introduction

This paper proposes a solution approach to linear problems with many constraints of the fol-

lowing type :
Z Xi; S Y ieI, ke K.
J

We call the above type of constraints generalized variable upper bound (GVUB) constraints
The variable y« may appear in any number of constraints, Schrage[7] coined the name for a
single variable type constraint, a variable upper bound constraint(VUB) and developed an
algorithmic solution approach to the problem. We present a solution approach based on
factorization and extend it for more generalized problems. The factorization approach has been
successful in problems with generalized upper bound(GUB) type constraints(3]. This research
will focus on the analysis why the VUB type constraints are amenable to the factorization ap-

proach and deal with implementation issues,
T o] =& 199284 E) ity A7H] X 23ty ATHAS.
Chung-Ang University

172 Kwang Min Yang EEEENEEE

These types of constraints are frequently found in integer programming problems, such as lo-
cation problems, job shop and priority scheduling problems. Since the VUB type constraints are
most of the constraints in these problems, the success of any algorithm depends on the effec-
tiveness of handling these constraints both in terms of storage space and solution time. Specific

examples of these constraints in various models are listed in Section 2.

2. Examples

Of the many modeis with VUB, the uncapacitated facility location problem is a representa-
tive. x# is the fraction of location j€J’s demand supplied from facility i€, yi is 1 if facility ¢ is
open and 0 otherwise. c¢s is the related variable cost for supplying s demand from facility 7 ;
and £i>0 is the cost of opening the facility i.

The model formulation is :

Minimize ¥ ¥ cjx;+Lfi;

subject to I}:_jgci,-=1, J éf
éi,gyi, i€l, jej (VUB constraints)
x;=20,i€l, je]
y:€{0,1}, il

Note that the above model with VUB type constraints is a tighter formulation than the one
below

T Eny, i€l
7

Although the formulation gives us a strong bound but at the expense of solving larger
problems, This makes us solve these problems with efficiency. Erlenkotter [2] developed an ef-
ficient algorithm for this problem based on the dual characterization of the problem.

By introducing the following constraint into the model we generalize it to p-median prob-
lem{1].

LYSp

F175% $£I3% Solving Linear Problems with Generalized Variable Upper Bounds 173

where p is the maximum number of plants,

Another example can be found in a least deviation problem. In this problem we are to find
the coefficients of a regression line which minimizes the maximum deviation (error) of the fit.

This can also be considered as a multi-attribute problem with gi being an individual target.

Minimize y

subject to Yax=g+5 —é, i€l
6;+Sy, iel (VUB)
8 <y, iel (VUB)
y, xi, &, & =0.

Committee scheduling problems also contain VUB[10]. xi is 1 if member 7 meets in time slot
k with topic ¢ ; otherwise 0. v being a logical variable needed to assure that the required num-

ber(#n) of committee members must be met. Let piir be preference of member j over 7, k.

Maximize 2': Xj: Zk: Dijr Xie
subject to Y x,<1,j€], k€K
S x=nys i€ 1, k=K
éy,—,,=1, i€l
Xu<¥wi€I, j€J, k€ K (VUB)
X Y4 €10, 11

VUB and GVUB type constraints are mostly found in scheduling type problems where these

constraints serve to enforce logical relations among variables or constraints.

3. Solution Approach

As shown in the examples, one characteristic of this type of model formulations is that most
constraints are VUB type constraints. It is, therefore, imperative to take care of these VUB
type constraints in an efficient manner if we can ever solve these large problems,

The solution approach adopted here is primarily based on Graves and McBride's[3]

factorization approach. This approach has a merit of providing us a framework with which we

i Kwang Min Yang SEEEHEEE

can devise a way to exploit the particular structure of the problems on hand, Factorization has
been successful in solving large scale LP problems with many GUB type problems[3]. We will
show that the factorization can also be applied to problems with GVUB as well as with VUB,

3.1 Factorization
Consider the problem

Maximize cx

subject to Ux<é (special constraints)
Lx<r (general constraints)
- Ix<0,

where U is pXn and L is mXxn. The U-type constraints are specially structured constraints.
After row and column permuted partition of U, L, b, », and ¢, we have

UiUUs b UuUz Un b

L L. Ly r = Ua Uz Uz b:

a ¢ o 0 Lu L Ly n (1)
La Lz Lxn 7

a ¢ ¢ 0

After multiple exchange of constraints (block pivot), we obtain the factored tableau corre-
sponding to any particular row basis, (Note the in Gravers' algorithm row basis are used, which

is different form ordinary simplex method.) See Graves and McBride’s[3] for details.

The complete factored tableau is

()
(i) [I4+U« U A Lo)Un™ —Un UpAn™ Un [Us—UrAn™"Ar] Un ' [b~UrAu 71

(i) [(722A~11-‘L11—U21]Uu-l —[722 Zu-l ﬁm—ﬁzﬁu—lle 32“(722 Zu-l ;1 (2)
—Au LoUu™ A zu-lzxz Aul7,

B17% B35 Solving Linear Problems with Generalized Variable Upper Bounds 175

[AuAn'Lu—LalUn™ —AnAn"' An—AnAn'Av 7:-AzAn’7 _\
[c2Au" Lu—cUn™ —c:Au™ ci—c: An'An —cy’
where

Uz=Uz — Ua Uu™' Un, Ua =Un — Ua Uu™' Us,

Auw= Lo — Lu U™ Up, Avw = Ls — Lu Un™ Us,

An =Lz — La U™ U, Ap = Ln — La Un™ U,

cr=c — w Un™ Ux, ci=c— o Un Uy, (3)

b=t — Un U &y,

ri=n— LaUu' &, 72=1 — La U™ bu.

With knowledge of the partition in (1) and the original problem data, we can always recon-
struct (2) from Un™' and Au’,

The resulting factored tableau looks very complicated, but it becomes quite simple when the
special structure of the U-type constraints is exploited. For further details, refer to the Graves
and McBride’s original paper[3].

3.2 Factorization of VUB constraints

We now consider the case where the special constraints (U) are of variable upper bound

type. That is,
x; <y, tel, jeJ.
In general,
,,‘:-;{x"""—y"Sb‘f‘ i€l, jeJ.
If K={1}, bi=0,

xii<yi, i€l, je].

We prove theorems which will be used for developing a solution approach., Assume U type

constraints are consisted of solely GVUB,

176 Kwang Min Yang BmELEMNEEIE

Theorem 1. U is totally unimodular.

Proof. 0, 1 matrices with consecutive 1’s are totally unimodular[9]. By using this theorem we
indirectly prove that U is totally unimodular. Non-zero coefficients of y: variables can always be
arranged columnwise consecutively by varying j index first, Variable xis appears only once in the
constraints. Therefore U-type constraints matrix can always be rearranged as consecutive —1’s or

—1’s. —I's cause no problem. This can always be handled through variable transformation.

Proposition 1. Uu is either an identity matrix or an identity matrix with one or more columns

replaced by coefficients of i

Proof. U1 must be non-singular for Un being existent. Rows of xi are disjoint, that is, columns
of xin are singletons and not empty. When Un consists of solely coefficients of xix Uu must be
an identity matrix, otherwise singular for having identical colunmns and null row(s), When i
enters Un and replaces a colunn, any one of x:» with same ¢ in Uu must be replaced by it.

Otherwise null row entries results, therefore singular.ill

Theorem 2. Every row of Un has at most two nonzero (either +1 or —1, or +1 and —1)

elements,

Proof. Since xi# columns are singleton, no xi with same ¢, & indices can enter Uun otherwise
singular as shown in Proposition 1. 3 columns are disjoint among themselves, Therefore every
row in Uu has at most two non-zero elements, one from an xi» column and the other from y:

column.

Using Theorem 2 we prove the following main theorem. Without loss of generality we can as-

sume that after column permutation we maintain no diagonal element in Un is zero.
Theorem 3. Uu is periodic of period 2, that is Un’=I.

Proof. Diagonal entries of Un are either +1 or —1,

For diagonal elements in Uu’: For rows in Un having only one element in their rows produce
1's in their diagonals of Uy’ since they are with the same sign. For rows with two entries (+1
and —1), the diagonal element in Un is always <1 with column singleton therefore the diagonal

of Ui’ is always 1.

1% $3K Solving Linear Problems with Generalized Variable Upper Bounds 177

For off-diagonal elements in Ui’ : Singleton rows do not produce off-diagonal elements in U’
since these are in diagonal. Rows having two non-zeroes always have opposite signs. Columns
having off-diagonal elements have all same (minus) signs. Therefore the resulting inner

products for off-diagonals always vanish. il

Theorem 3 proves that we do not need to compute Uu ', Instead we can use Uu for Un™' in
the factored tableau. Recall that Uu in GUB LP is an identity matnx, therefore the tableau
becomes simplified. This property is attributed to the effectiveness of the factorization approach
to GUB.

Notice that in (2) and (3) Uu"" always comes with the form of either Uu ‘U or Un™ ‘U,

We now consider the way to generate these products efficiently. Let Ui denote either U or
Un.

Theorem 4. Un™' U is constructed form Ui by replacing every singleton column of Ui by

corresponding k-th column of Uu where % is the row index of 1 in the singleton column,

Proof. Post-multiplying Un by a singleton column Ui is equivalent to selecting a column of Un.
If the column of Ui is not a singleton column then it must be the coefficients of yi. Since
coefficients of y: are columnwise disjoint, rows of Uu corresponding to non-zero y: rows have
only one entry (i.e.,, 1) at their diagonal (Recall that Uu as permuted to have non-zero diagonal

elements). Therefore pre-multiplying Un™" has no effect on Uw. B

Due to Theorem 4 it is possible to construct Un ‘Ui by maintaining column indices of Un and

Ui« without going through actual computations.

4. Implementation Considerations

4.1 Reducing Explicit Part of the Tableau

Assuming all U-type constraints in (1) are transformed to equality constraints after adding
slack variables, then the rows labeled (#Z) in (2) will vanish. Upon block pivoting on these
equality constraints at the very beginning of the algorithm, the columns labeled in (j) are no

longer needed to carry since pivoting on these columns again would violate the equality

178 Kwang Min Yang ZESEHEaE

constraints. The size of the factored tableau needed to carry out the algorithm, therefore, can
be reduced.

Adopting a strategy of updating only Au"' and the rim (objective row and RHS) data at
each iteration and generating the other parts of the tableau as needed to execute the algorithm,

the size of the tableau to be maintained will further be reduced.

4.2 Generation of Implicit Part

Supposing a primal algorithm is executed, we need to generate implicit elements only
columnwise to determine the pivot row. The tableau indicates that Un ‘U premultiplies An?
and Un 'Us is premultiplied either by Lu or L to generate implicit elements. Since we
assumed that the elements of Un Ui are generated columnwise, pre- and post-multiplying by
Uun'Ui can be accomplished by outer product forms and by inner product forms respectively.
All multiplications are executed from right to left.

Since only A ™' is maintained explicitly and other columns are generated as needed, the work
per pivot is determined primarily by the size or A", not by the original problem size. The
size of Au”" is equal to the number of binding constraints in L-type constraints that is rela-
tively small in comparison with the total number of the constraints. However, maintaining Ayl
requires to keep the indices of rows and columns of A dynamically, which takes extra time
and complicates the implementation. Instead if we start with equality L-type constraints by
introducing extra variables to the inequalities, an existing LP code such as XMP[5], SPLP[4],
or LINDO[8] can readily be used with little modification. This requires more time to deal with

larger Au”' but no time is spent to keep the dynamic changes of An" as we iterate,

5. Extension

The solution approach developed can be extended for the problems with following constraints,
Let Ji€{jla;* #0} be pairwise disjoint subset of the set J2uUJ: and I+€{ila;’#0} be pairwise
disjoint subset of the set I =y I.. GVUB constraints are of the form,

r a},-x,-+}k:a?,,y,sb,<, el
x;, %:.€{0, 11

=174 538 Solving Linear Problems with Generalized Variable Upper Bounds 179

Note that the sign of the coefficients, a, can be either plus or minus.

It is always possible to transform a? into -1’s by row scalings and &' into 4+1’s by performing

column scalings on ¢ and by variable transformations using ¥;=1—2x; if necessary.

6. Conclusion

VUB type constraints are frequently found in integer programming problems due to their
tighter formulations which in turn provide good bounds in enumeration schemes, However, the
relatively large number of this type of constraints cause computational burden, Schrage devel-
oped an algorithmic solution approach based on the notion of carrying these constraints im-
plicitly like in GUB algorithms,

The approach taken in this research is based on Graves and McBride'’s factorization approach.
The factorization approach has been successful in solving problems with GUB, embedded net-
work problems[6], and others. This paper showed that the problems with VUB are also amen-
able to this approach and extends it for more general problems, GVUB. The advantage of
adopting the factorization lies not only in the computational efficiency but also in providing a
framework of analyzing the underlying problem structure that can be exploited in designing an
algorithm, Generalization of this approach is possible due to this analytical framework.

The computational efficiency of the algorithm is attributed to obtaining Un 'Ux. In GUB Un
is an identity matrix, therefore, Un 'Uw becomes Uw. The fact that .le 1s column singleton
makes following computations effortless both in computational time and in data structure.

Although it is not dramatic as in GUB, the required work for constraints with VUB can be
similarly reduced. Un 'Uix can be constructed from permuting columns of the original U instead
of computing matrix inverse and multiplying two matrices. This, together with not carrying the
specially structured constraints explicitly, will result in overall computational efficiency over
other solution approaches. The computational burden is further reduced by carrying only A ™
explicitly and generating other elements of the tableau as needed.

The approach adopted in this research can be extended for problems with more generalized
constraints such as the one shown in Section 5,

Further research must include computational experiments on specific problems which will ver-

180 Kwang Min Yang HERSEREES

ify the effectiveness of the proposed approach.

References

[1] Conn, A. R. and G. Cornuejols, “A Projection Method for the Uncapacitated Facility Lo-
cation Problem,” Mathematical Programming, Vol.46 (1990), pp.273—298.

(2] Erlenkotter, Donald, “A Dual-Based Procedure for Uncapacitated Facility Location,”
Operations Research, Vol.26, No.6 (November-December 1978), pp.992—1009.

[3] Graves, G.W. and R. D. McBride, “The Factorization Approach to Large-Scale Linear Pro-
gramming,” Mathematical Programming, Vol.10 (1976), pp.91—110.

[4] Hanson, R. J. and K. L. Hiebert, A Sparse Linear Programming Subprogram, Sandia
National Laboratory, Report SAND 81-0297, 1981.

[5] Marsten, Roy E., “The Design of the XMP Linear Programming Library,” ACM
Transactions on Mathematical Software, Vol.7, No.4 (December 1981), pp.481—497.

(6] McBride, Richard D., “Solving Embedded Generalized Network Problems,” European
Journal of Operational Resarch, Vol.21 (1985), pp.82—92.

[7] Schrage, Linus, “Implicit Representation of Variable Upper Bounds in Linear Programming,”
Mathematical Programming Study, Vol.4 (1975), pp.118—132.

{8} , User's Manual for Linear, Integer, and Quadratic Programming with LINDO
(Release 5.0), The Scientific Press, 1991.

(9] Veinott, AF., Jr. and H .M ,Wagner, “Optimal Capacity Scheduling - I and II,” Operations
Research, Vol.10 (1962), pp.518—546.

[10] Yang, Kwang Min and Seung-Chul Shin, “A Thesis Committee Scheduling,” Journal of
the Korean Operations Research and Management Science Society, Vol.15, No.2{December
1990), pp.17-31.

