• Title/Summary/Keyword: Updating rule

Search Result 36, Processing Time 0.024 seconds

Optimal solution search method by using modified local updating rule in Ant Colony System (개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법)

  • Hong, Seok-Mi;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the number of visiting times and the distance between visited cities. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

An Effective Ant Colony System Optimization for Symmetric Traveling Salesman Problem (Symmetric Traveling Salesman Problem을 해결하기 위해 Ant Colony System에서의 효과적인 최적화 방법에 관한 연구)

  • Jung, Tae-Ung;Lee, Sung-Gwan;Jung, Tae-Chung
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.321-324
    • /
    • 2000
  • 조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.

  • PDF

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System (Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System (ACS) Algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP). In this paper, we introduce ACS of new method that adds reinforcement value for each edge that visit to Local/Global updating rule. and the performance results under various conditions are conducted, and the comparision between the original ACS and the proposed method is shown. It turns out that our proposed method can compete with tile original ACS in terms of solution quality and computation speed to these problem.

Learning Input Shaping Control with Parameter Estimation for Nonlinear Actuators (비선형 구동기의 변수추정을 통한 학습입력성형제어기)

  • Kim, Deuk-Hyeon;Sung, Yoon-Gyung;Jang, Wan-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1423-1428
    • /
    • 2011
  • This paper proposes a learning input shaper with nonlinear actuator dynamics to reduce the residual vibration of flexible systems. The controller is composed of an estimator of the time constant of the nonlinear actuator dynamics, a recursive least squares method, and an iterative updating algorithm. The updating mechanism is modified by introducing a vibration measurement function to cope with the dynamics of nonlinear actuators. The controller is numerically evaluated with respect to parameter convergence and control performance by using a benchmark pendulum system. The feasibility and applicability of the controller are demonstrated by comparing its control performance to that of an existing controller algorithm.

Excel macro for applying Bayes' rule (베이즈 법칙의 활용을 위한 엑셀 매크로)

  • Kim, Jae-Hyun;Baek, Hoh-Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1183-1197
    • /
    • 2011
  • The prior distribution is the probability distribution we have before observing data. Using Bayes' rule, we can compute the posterior distribution, the new probability distribution, after observing data. Computing the posterior distribution is much easier than before by using Excel VBA macro. In addition, we can conveniently compute the successive updating posterior distributions after observing the independent and sequential outcomes. In this paper we compose some Excel VBA macros for applying Bayes' rule and give some examples.

Improved Learning Algorithm with Variable Activating Functions

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.815-821
    • /
    • 2005
  • Among the various artificial neural networks the backpropagation network (BPN) has become a standard one. One of the components in a neural network is an activating function or a transfer function of which a representative function is a sigmoid. We have discovered that by updating the slope parameter of a sigmoid function simultaneous with the weights could improve performance of a BPN.

  • PDF

Bitmap Intersection Lookup (BIL);A Packet Classification's Algorithm with Rules Updating

  • Khunkitti, Akharin;Promrit, Nuttachot
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.767-772
    • /
    • 2005
  • The Internet is a packet switched network which offers best-effort service, but current IP network provide enhanced services such Quality of Services, Virtual Private Network (VPN) services, Distribute Firewall and IP Security Gateways. All such services need packet classification for determining the flow. The problem is performing scalable packet classification at wire speeds even as rule databases increase in size. Therefore, this research offer packet classification algorithm that increase classifier performance when working with enlarge rules database by rearrange rule structure into Bitmap Intersection Lookup (BIL) tables. It will use packet's header field for looking up BIL tables and take the result with intersection operation by logical AND. This approach will use simple algorithm and rule structure, it make classifier have high search speed and fast updates.

  • PDF

Combining Multi-Criteria Analysis with CBR for Medical Decision Support

  • Abdelhak, Mansoul;Baghdad, Atmani
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1496-1515
    • /
    • 2017
  • One of the most visible developments in Decision Support Systems (DSS) was the emergence of rule-based expert systems. Hence, despite their success in many sectors, developers of Medical Rule-Based Systems have met several critical problems. Firstly, the rules are related to a clearly stated subject. Secondly, a rule-based system can only learn by updating of its rule-base, since it requires explicit knowledge of the used domain. Solutions to these problems have been sought through improved techniques and tools, improved development paradigms, knowledge modeling languages and ontology, as well as advanced reasoning techniques such as case-based reasoning (CBR) which is well suited to provide decision support in the healthcare setting. However, using CBR reveals some drawbacks, mainly in its interrelated tasks: the retrieval and the adaptation. For the retrieval task, a major drawback raises when several similar cases are found and consequently several solutions. Hence, a choice for the best solution must be done. To overcome these limitations, numerous useful works related to the retrieval task were conducted with simple and convenient procedures or by combining CBR with other techniques. Through this paper, we provide a combining approach using the multi-criteria analysis (MCA) to help, the traditional retrieval task of CBR, in choosing the best solution. Afterwards, we integrate this approach in a decision model to support medical decision. We present, also, some preliminary results and suggestions to extend our approach.

A RULE-BASED APPROACH for AUTOMATIC CONTINGENCY SELECTION in POWER SYSTEMS (자동 상정사고 선택에 관한 룰-베이스적 접근)

  • Park, Young-Moon;Shin, Joong-Rin;Jo, Gang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.118-121
    • /
    • 1987
  • This paper presents a rule-based approach for automatically selecting critical contingencies in electric power systems. The rules required to perform the task are derived from inspection about results of simulation and expertise of operators. And inherent information of system, for example, topology of system configuration, and flow direction in a line by compensation theorem. etc., which are independent of operating point of system, is stored in the database using the off-line calculation. The approach was investigated using the study of a sample test system. Since it is based on the knowledge engineering technique, efficiency of selection can be improved by updating and adding the rules.

  • PDF