• 제목/요약/키워드: Unsteady Flow Computation

검색결과 150건 처리시간 0.026초

상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석 (Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.

선형 4점 특성법에 의한 부정류의 해석 (The Linearized Four-point Method of Characteristics for Unsteady Flow Computation)

  • 이종태;이원환
    • 물과 미래
    • /
    • 제15권4호
    • /
    • pp.39-44
    • /
    • 1982
  • 본 연구는 수면변화의 전파특성을 이용한 4점법(four-point method of characteristics)의 선형화이론을 개수로의 불정류해석에 적용하는 문제와 관련하여, 직사각형 만입에서 본 해석모형에 대한 1차원 정진동 수치 검정실험을 실시하였고, 2차원 불정류의 해석에 있어서 안정성(stability) 문제에 대하여 검토하였다. 본 해석모형은 수위변화가 수심에 비해 충분히 작은 흐름의 경우에 효과적으로 간편하게 사용할 수 있음을 알 수 있었다.

  • PDF

Computing transient flows with high elasticity

  • Roger I. Tanner;Xue, S-C
    • Korea-Australia Rheology Journal
    • /
    • 제14권4호
    • /
    • pp.143-159
    • /
    • 2002
  • Although much progress has been made in the computation of Eulerian steady flows with high viscoelasticity, less work has been done for the case of transient flows. Because of their importance in injection moulding, blow moulding and other forming processes, as well as their Intrinsic interest, we believe more attention should be focussed in this area. Hence in this paper we review progress in unsteady flow computations with high elasticity, and show some new results in this area.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 1. 동적실속이 없는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 1. without Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, numerical calculations are performed to analyze the unsteady flow of NACA airfoil sections. In order to ease the flow computation for the fluid region changing in time, improve the quality of solution and simplify the grid generation for the oscillating foil flow, the computational method adopts a moving and deforming mesh with the multi-block grid topology. The multi-block, structured-unstructured hybrid grid is generated using the commercial meshing software Gridgen V15. The MDM (Moving & Deforming Mesh) and the UDF (User Define function) function of FLUENT 6 are adopted for computing turbulent flows of the foil in pitching motion. Computed unsteady lift and drag forces are compared with experimental data. in general, the characteristics of unsteady lift and drag of the experiments are reproduced well in the numerical analysis.

이중시간전진법과 k-$\omega$ 난류모델을 이용한 익렬 내부 비정상 유동해석 (Unsteady cascade flow calculations of using dual time stepping and the k-$\omega$ turbulence model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1624-1634
    • /
    • 1997
  • A numerical study on two-dimensional unsteady transonic cascade flow has been performed by adopting dual time stepping and the k-.omega. turbulence model. An explicit 4 stage Runge-Kutta scheme for the compressible Navier-Stokes equations and an implicit Gauss-Seidel iteration scheme for the k-.omega. turbulence model are proposed for fictitious time stepping. This mixed time stepping scheme ensures the stability of numerical computation and exhibits a good convergence property with less computation time. Typical steady-state convergence accelerating schemes such as local time stepping, residual smoothing and multigrid combined with dual time stepping shows good convergence properties. Numerical results are presented for unsteady laminar flow past a cylinder and turbulent shock buffeting problem for bicircular arc cascade flow is discussed.

가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발 (Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method)

  • 정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교 (Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations)

  • 서용권
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

Visualization of Unsteady Fluid Flows by Using Large Eddy Simulation

  • Kobayashi, Toshio;Taniguchi, Nobuyuki
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1750-1756
    • /
    • 2001
  • Three-dimensional and unsteady flow analysis is a practical target of high performance computation. As recently advances of computers, a numerical prediction by the large eddy simulation (LES) are introduced and evaluated for various engineering problems. Its advanced methods for the complex turbulent flows are discussed by several examples applied for aerodynamic designs, analysis of fluid flow mechanisms and their interaction to complex phenomena. These results of time-dependent and three-dimensional phenomena are visualized by interactive graphics and animations.

  • PDF