• Title/Summary/Keyword: Unreinforced

Search Result 289, Processing Time 0.028 seconds

Effect of Non-Woven Geotextile Reinforcement on Mechanical Behavior of Sand (모래의 역학적 거동에 미치는 부직포 보강재의 효과)

  • Kim, You-Seong;Oh, Su-Whan;Cho, Dae-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • The effects of non-woven geotextiles on mechanical behavior of sand were investigated. A comprehensive series of triaxial compression tests were performed for these investigation on unreinforced and reinforced sand with geotextiles. The Joomunjin standard sand was used and non-woven geotextiles were included into sand specimen with three layers. The inclusion of non-woven geotextile reinforcement into sand increased the peak strength of sand significantly and the reinforced samples exhibited a greater axial strain at failure. Also the effect on number of reinforcement layers was studied and found as increasing the number of reinforcement layers resulting in more ductility by clogging developed in the shear band within the specimens. It was also found that the tendency of samples to dilate is restricted by non-woven geotextile inclusion. The effect of nunber of reinforcement layer increasing is just same to the effect of decreasing void ratio of sand in this case.

  • PDF

Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite ($Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동)

  • Song, Jeong-Il;LIm, Hong-Jun;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.

Mechanical Properties and Solid Lubricant Wear Behavior of MMCs Reinforced with a Hybrid of $Al_{2}O_{3}$ and Carbon Short Fibers (알루미나와 탄소단섬유를 혼합한 금속복합재료의 기계적 성질과 고체윤활 마모거동)

  • 송정일;봉하동;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.968-980
    • /
    • 1995
  • Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites are fabricated by the direct squeeze infiltration method. From the microstructure of Al/Al$_{2}$O$_{3}$/C composites, uniform distribution of reinforcements and good bondings are found. Optimum processing conditions for preforms and squeeze castings are suggested. Mechanical properties, such as elastic modulus, elongation, 0.2% offset yield strength and ultimate tensile strength are obtained. Through the abrasive were test and wear surface analsis, wear behavior and its mechanism of AC2B aluminum and Al/Al$_{2}$O$_{3}$/C composites can be characterized under various sliding speed conditions. Tensile strenght elongation of Al/Al$_{2}$O$_{3}$/C composites are decreased with increasing the addition of carbon fiber. On the contrary, elastic modulus of Al/Al$_{2}$O$_{3}$/C composites is slightly improved compared with that of the unreinforced matrix alloy. The addition of carbon fiber to al/al$_{2}$O$_{3}$/C composites gives rise to improvement of the wear resistance. Specially, carbon chopped fibers play an important role in interfering sticking between the counter material and metal matirix composites. Al/Al$_{2}$O$_{3}$/C composites are suitable to high speed due to solid lubication of carbon. And wear model of Al/Al$_{2}$O$_{3}$/C composites is suggested by the examination of worn surfaces.

Shear Strength Model for FRP Shear-Reinforced Concrete Beams (FRP 전단 보강 콘크리트 보의 전단강도 모델)

  • Choi, Kyoung-Kyu;Kang, Su-Min;Shim, Woo-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.185-193
    • /
    • 2011
  • In the present study, a unified shear design method was developed to evaluate the shear strength of concrete beams with and without FRP shear reinforcement. The contributions of FRP and concrete on shear strength were defined separately. By comparing the current design method calculated results with the existing test results, it was found that Triantafillou model shows a reliable prediction of FRP effective strain and FRP shear strength contributions. The concrete shear strength contribution was defined by the strain-based shear strength model developed in the previous study. The shear strength of concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal and shear stresses. The proposed strength model was verified by comparing its prediction results to prior test results. The comparisons showed that the proposed method accurately predicts the strengths of the test specimens for both FRP shear reinforced and unreinforced concrete beams.

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

A Study on the Strength Properties and Life Cycle Assessment of High Strength Concrete Using Recycled Coarse Aggregate (순환굵은골재를 활용한 콘크리트의 강도 특성 및 전과정 환경영향 평가에 관한 연구)

  • Choi, Won-Young;Lee, Sae-Hyun;Jun, Chan-Soo;Kim, Tae-Hyoung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Waste concrete accounts for the largest portion of construction waste, and the supply of natural aggregate is unstable. Therefore, importance of using recycled aggregate is emphasized. The purpose of this study is to investigate the mechanical properties of high strength concrete according to the replacement rate of recycled coarse aggregate. For this purpose, the target design compressive strength was set to 40MPa, and the substitution rates of the recycled coarse aggregate were set to 0%, 30%, 60%, and 100%, respectively. Through experiments on the unreinforced concrete and hardened concrete, The validity of the use was confirmed. In addition, LCA method was used to evaluate the environmental impact of recycled aggregates and to compare and analyze the environmental impacts of the aggregates.

Fragility reduction using passive response modification in a Consequence-Based Engineering (CBE) framework

  • Duenas-Osorio, Leonardo;Park, Joonam;Towashiraporn, Peeranan;Goodno, Barry J.;Frost, David;Craig, James I.;Bostrom, Ann
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.527-537
    • /
    • 2004
  • Consequence-Based Engineering (CBE) is a new paradigm proposed by the Mid-America Earthquake Center (MAE) to guide evaluation and rehabilitation of building structures and networks in areas of low probability - high consequence earthquakes such as the central region of the U.S. The principal objective of CBE is to minimize consequences by prescribing appropriate intervention procedures for a broad range of structures and systems, in consultation with key decision makers. One possible intervention option for rehabilitating unreinforced masonry (URM) buildings, widely used for essential facilities in Mid-America, is passive energy dissipation (PED). After the CBE process is described, its application in the rehabilitation of vulnerable URM building construction in Mid-America is illustrated through the use of PED devices attached to flexible timber floor diaphragms. It is shown that PED's can be applied to URM buildings in situations where floor diaphragm flexibility can be controlled to reduce both out-of-plane and in-plane wall responses and damage. Reductions as high as 48% in roof displacement and acceleration can be achieved as demonstrated in studies reported below.

Performance evaluation of a seismic retrofitted R.C. precast industrial building

  • Nastri, Elide;Vergato, Mariacristina;Latour, Massimo
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • Recent seismic events occurred in Italy (Emilia-Romagna 2012, Abruzzo 2009) and worldwide (New Zealand 2010 and 2011) highlighted some of the weaknesses of precast concrete industrial buildings, especially those related to the connecting systems traditionally employed to fasten the cladding panels to the internal framing. In fact, one of the most commons fails it is possible to observe in such structural typologies is related to the out-of-plane collapse of the external walls due to the unsatisfactory behaviour of the connectors used to join the panels to the perimeter beams. In this work, the strengthening of a traditional industrial building, assumed as a case study, made by precast reinforced concrete is proposed by the adoption of a dual system allowing the reinforcement of the structure by acting both internally; by pendular columns and, externally, on the walls. In particular, traditional connections at the top of the walls are substituted by devices able to work as a slider with vertical axis while, the bottom of the walls is equipped with two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. By means of this approach, the structure is stiffened; obtaining a reduction of the lateral drifts under serviceability limit states. In addition, its seismic behaviour is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested retrofitting approach has been checked by comparing the performance of the retrofitted structure with those of the structure unreinforced by means of both pushover and Incremental Dynamic Analyses (IDA) in terms of behaviour factor, assumed as a measure of the ductility capacity of the structure.

Assessment of Geosynthetic Soilbag Method to Restore the Roadbed of Railway (철도노반 복구를 위한 토목섬유 Soilbag 공법의 적용성 평가)

  • Hwang, Seon-Keun;Koh, Tae-Hoon;Park, Sung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.65-75
    • /
    • 2004
  • Roadbed failure due to the natural disaster may bring out social and economic damage such as the loss of life and property, the consumption of time and cost for recovery, and the delay of logistics in railway In this study, the method using geosynthetic soilbag was applied to rehabilitation of the railway roadbed which was failed by disaster. The full scale tests with the simulated train loading were performed in order to evaluate the static and dynamic performance at the railway roadbed using geosynthetic soilbag. The results of these tests were compared with unreinforced and reinforced cases with geosynthetic soilbag, respectively The data gathered by various measurement devices from these full scale tests would be useful to evaluate and understand the roadbed with geosynthetic soilbag. In conclusion, geosynthetic soilbag was evaluated as a permanent restoration method to reinforce the roadbed of railway.