• Title/Summary/Keyword: Unmanned aerial vehicles

Search Result 465, Processing Time 0.03 seconds

3D spatial data generation and data cross-utilization for monitoring Geoparks: Using Unmanned Aerial Vehicle and Virtual Reality (지질공원 모니터링을 위한 3D 공간데이터 구축과 데이터 교차활용 방안연구: 무인항공기와 가상현실을 이용하여)

  • Park, Haekyung;Lee, Dongkun
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.501-511
    • /
    • 2018
  • Geoparks are worth preserving in an environmentally and heritage. Monitoring and public attention are essential for the conservation and protection of geoparks. The use of Unmanned Aerial Vehicles and the Structure from Motion algorithm enables effective monitoring of geoparks that are difficult to manage due to their wide range of manpower, and various spatial data derived from SfM can be utilized to improve awareness of geoparks that have been lacking. In order to prove this, firstly, we created the 3D spatial data by using the UAV and the SfM algorithm, which is one of the National geoparks of the Hantan-Imjin River area. Using this 3D data for Virtual Reality and 3D printing. After that, we verified the possibility of promoting the geopark through a simple online survey. Finally, we propose a method to utilize all the generated data from each step to promote and research for geoparks.

A Study on the Building Height Estimation and Accuracy Using Unmanned Aerial Vehicles (무인비행장치기반 건축물 높이 산출 및 정확도에 관한 연구)

  • Lee, Seung-weon;Kim, Min-Seok;Seo, Dong-Min;Baek, Seung-Chan;Hong, Won-Hwa
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • In order to accommodate the increase in urban population due to government-led national planning and economic growth, many buildings such as houses and business building were supplied. Although the building law was revised and managed to manage the supplied buildings, for the sake of economic benefit, there have been buildings that are enlarged or reconstructed without declaring building permits. In order to manage these buildings, on-site surveys were conducted. but it has many personnel consumption. To solve this problem, a method of using a satellite image and a manned aircraft is utilized, but it is diseconomical and a renewal cycle is long. In addition, it is not utilized to the height, and although it is judged by the shading of the building, it has limitations that it must be calculated individually. In this study, height of the building was calculated by using the unmanned aerial vehicle with low personnel consumption, and the accuracy was verified by comparison with the building register and measured value. In this study, spatial information was constructed using a fast unmanned aerial vehicle with low manpower consumption and the building height was calculated based on this. The accuracy by comparing the calculated building height with the building register and the actual measurement.

CNN based dual-channel sound enhancement in the MAV environment (MAV 환경에서의 CNN 기반 듀얼 채널 음향 향상 기법)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1506-1513
    • /
    • 2019
  • Recently, as the industrial scope of multi-rotor unmanned aerial vehicles(UAV) is greatly expanded, the demands for data collection, processing, and analysis using UAV are also increasing. However, the acoustic data collected by using the UAV is greatly corrupted by the UAV's motor noise and wind noise, which makes it difficult to process and analyze the acoustic data. Therefore, we have studied a method to enhance the target sound from the acoustic signal received through microphones connected to UAV. In this paper, we have extended the densely connected dilated convolutional network, one of the existing single channel acoustic enhancement technique, to consider the inter-channel characteristics of the acoustic signal. As a result, the extended model performed better than the existed model in all evaluation measures such as SDR, PESQ, and STOI.

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.

Development of Korean UCS Architecture and Service Design for GCS Standardization (GCS 공통화를 위한 한국형 UCS 개발 및 서비스 설계)

  • Yoorim Choi;Sangyun Park;Chulhwan Kim;Gyeongrae Nam;So-Yeong Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.314-322
    • /
    • 2023
  • The use of unmanned aerial vehicles is rapidly increasing in order to effectively utilize limited manpower and minimize casualties on the battlefield. The requirements for ground control equipment vary depending on the operating concept and environment of the unmanned aerial system, but there are still common requirements. However, the lack of standardized system configurations to meet these common requirements makes it difficult to reuse common functions, leading to continuous acquisition costs. To solve this problem, this paper develops a Korean version of the UCS model using the UCS architecture. Furthermore, after designing elements related to service development not specified in the architecture (such as framework, communication middleware, service structure, etc.), we develop a Boilerplate to enhance developers' work efficiency based on this. The results of this study will serve as a foundation for effectively and economically carrying out the development of ground control equipment for unmanned aerial systems.

A Study on Optimal Convolutional Neural Networks Backbone for Reinforced Concrete Damage Feature Extraction (철근콘크리트 손상 특성 추출을 위한 최적 컨볼루션 신경망 백본 연구)

  • Park, Younghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.511-523
    • /
    • 2023
  • Research on the integration of unmanned aerial vehicles and deep learning for reinforced concrete damage detection is actively underway. Convolutional neural networks have a high impact on the performance of image classification, detection, and segmentation as backbones. The MobileNet, a pre-trained convolutional neural network, is efficient as a backbone for an unmanned aerial vehicle-based damage detection model because it can achieve sufficient accuracy with low computational complexity. Analyzing vanilla convolutional neural networks and MobileNet under various conditions, MobileNet was evaluated to have a verification accuracy 6.0~9.0% higher than vanilla convolutional neural networks with 15.9~22.9% lower computational complexity. MobileNetV2, MobileNetV3Large and MobileNetV3Small showed almost identical maximum verification accuracy, and the optimal conditions for MobileNet's reinforced concrete damage image feature extraction were analyzed to be the optimizer RMSprop, no dropout, and average pooling. The maximum validation accuracy of 75.49% for 7 types of damage detection based on MobilenetV2 derived in this study can be improved by image accumulation and continuous learning.

Real-time Anomaly Detection System Using HITL Simulation-Based UAV Packet Data (HITL 시뮬레이션 기반 무인비행체 패킷 데이터를 활용한 실시간 이상 탐지 시스템)

  • Daekyeong Park;Byeongjin Kim
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.103-113
    • /
    • 2023
  • In recent years, Unmanned Aerial Vehicles (UAV) have been widely used in various industries. However, as the depend ence on UAV increases rapidly, concerns about the security and safety of UAV are growing. Currently, various vulnerabili ties such as stealing the control right of the UAV or the right to communicate with the UAV in the web application are being disclosed. However, there is a lack of research related to the security of UAV. Therefore, in this paper, a study was conducted to determine whether the packet data was normal or abnormal by collecting packet data of an unmanned aerial vehicle in a HITL(Hardware In The Loop) simulation environment similar to the real environment. In addition, this paper proposes a method for reducing computational cost in the modeling process and increasing the ease of data interpretation, a machine learning-based anomaly detection model that detects abnormal data by learning only normal data, and optimized hyperparameter values.

Optimal Placement of UAVs for Self-Organizing Communication Relay: Voronoi Diagram-Based Method (군집 무인기들의 자가구성 통신중계 최적 배치: 보로노이 다이어그램 기반 접근법)

  • Junhee Jang;Hyunwoo Kim;Minsu Park;Seunghwan Choi;Chanyoung Song;Hyeok Yu;Deok-Soo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2024
  • The utilization of Unmanned Aerial Vehicles (UAVs) is expanding in various industries such as logistics, manufacturing, and transportation. However, to operate a large number of UAVs, it is imperative to first plan a secure and efficient self-configuring communication network for UAVs. In this study, we proposed a method for planning a secure and efficient UAV self-configuring communication network using Voronoi diagrams in the following three steps: 1) generating Voronoi diagrams using obstacles, 2) selecting obstacles to consider for path generation, and 3) planning the optimal path and outputting the path. The real-time feasibility of using the proposed method for planning optimal communication paths for a realistic number of UAVs was experimentally validated.

Performance Comparison and Optimal Selection of Computing Techniques for Corridor Surveillance (회랑감시를 위한 컴퓨팅 기법의 성능 비교와 최적 선택 연구)

  • Gyeong-rae Jo;Seok-min Hong;Won-hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.770-775
    • /
    • 2023
  • Recently, as the amount of digital data increases exponentially, the importance of data processing systems is being emphasized. In this situation, the selection and construction of data processing systems are becoming more important. In this study, the performance of cloud computing (CC), edge computing (EC), and UAV-based intelligent edge computing (UEC) was compared as a way to solve this problem. The characteristics, strengths, and weaknesses of each method were analyzed. In particular, this study focused on real-time large-capacity data processing situations such as corridor monitoring. When conducting the experiment, a specific scenario was assumed and a penalty was given to the infrastructure. In this way, it was possible to evaluate performance in real situations more accurately. In addition, the effectiveness and limitations of each computing method were more clearly understood, and through this, the help was provided to enable more effective system selection.

Proportional Navigation-Based Optimal Collision Avoidance for UAVs (비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동)

  • 한수철;방효충
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.