DOI QR코드

DOI QR Code

Optimal Placement of UAVs for Self-Organizing Communication Relay: Voronoi Diagram-Based Method

군집 무인기들의 자가구성 통신중계 최적 배치: 보로노이 다이어그램 기반 접근법

  • Junhee Jang (Department of Mechanical Engineering, Hanyang University) ;
  • Hyunwoo Kim (Department of Mechanical Engineering, Hanyang University) ;
  • Minsu Park (Korea Aerospace Research Institute) ;
  • Seunghwan Choi (Department of Mechanical Engineering, Hanyang University) ;
  • Chanyoung Song (Department of Mechanical Engineering, Hanyang University) ;
  • Hyeok Yu (Korea Aerospace Research Institute) ;
  • Deok-Soo Kim (Department of Mechanical Engineering, Hanyang University)
  • 장준희 (한양대학교 기계공학부) ;
  • 김현우 (한양대학교 기계공학부) ;
  • 박민수 (한국항공우주연구원) ;
  • 최승환 (한양대학교 기계공학부) ;
  • 송찬영 (한양대학교 기계공학부) ;
  • 유혁 (한국항공우주연구원) ;
  • 김덕수 (한양대학교 기계공학부)
  • Received : 2023.11.24
  • Accepted : 2024.05.21
  • Published : 2024.06.30

Abstract

The utilization of Unmanned Aerial Vehicles (UAVs) is expanding in various industries such as logistics, manufacturing, and transportation. However, to operate a large number of UAVs, it is imperative to first plan a secure and efficient self-configuring communication network for UAVs. In this study, we proposed a method for planning a secure and efficient UAV self-configuring communication network using Voronoi diagrams in the following three steps: 1) generating Voronoi diagrams using obstacles, 2) selecting obstacles to consider for path generation, and 3) planning the optimal path and outputting the path. The real-time feasibility of using the proposed method for planning optimal communication paths for a realistic number of UAVs was experimentally validated.

UAV (Unmanned Aerial Vehicle)는 물류, 산업, 운송 등 다양한 산업에서 그 활용처가 확대되고 있다. 하지만 다수의 UAV를 운용하기 위해서는 안전하고 효율적인 UAV 자가구성 통신망을 계획하는 것이 우선적으로 이루어져야 한다. 본 연구에서는 보로노이 다이어그램을 활용하여 안전하고 효율적인 UAV 자가구성 통신망을 계획하는 방법을 다음 3가지 단계로 제시한다: 1)장애물들을 이용한 보로노이 다이어그램 생성, 2)경로를 생성하기 위해 고려해야 할 장애물 선별, 3)최적 경로 계획 및 경로 출력. 본 연구에서 제시한 방법은 실제 운용 시 UAV들의 최적 통신경로를 계획하는 것이 실시간으로 가능한 것을 실험을 통해 검증하였다.

Keywords

Acknowledgement

본 연구는 한양대학교의 분자기하학 및 분자기하운영체제 개발 연구단 연구비 지원(2017R1A3B1023591), 과학기술정보통신부의 재원으로 한국연구재단, 무인이동체원천기술개발사업단의 지원을 받아 무인이동체원천기술개발사업을 통해 수행되었음.(No. NRF-2020M3C1C1A02086425)

References

  1. FAN Bangkui, LI Yun, ZHANG Ruiyu and FU Qiqi, "Review on the Technological Development and Application of UAV Systems." Chinese Journal of Electronics. Vol.29, No.2, p199-207, 2020 
  2. Pehlivanoglu, Y. Volkan. "A new vibrational genetic algorithm enhanced with a Voronoi Diagram for path planning of autonomous UAV." Aerospace Science and Technology 16.1, p47-55, 2012  https://doi.org/10.1016/j.ast.2011.02.006
  3. Chandler, Phillip, Steven Rasmussen, and Meir Pachter. "UAV cooperative path planning." AIAA guidance, navigation, and control conference and exhibit, p14-17, August 2000. 
  4. Bortoff, Scott A. "Path planning for UAVs." Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334). Vol. 1. No. 6, p28-30, August 2000. 
  5. Judd, Kevin, and Timothy McLain. "Spline based path planning for unmanned air vehicles." AIAA Guidance, Navigation, and Control Conference and Exhibit, p6-9 2001. 
  6. Deok-Soo Kim, Donguk Kim , Kokichi Sugihara. "Voronoi Diagram of a circle set from Voronoi Diagram of a point set: I." Topology Computer Aided Geometric Design,18-6 p541-62, 2001. 
  7. Deok-Soo Kim, Donguk Kim, Kokichi Sugihara. "Voronoi Diagram of a circle set from Voronoi Diagram of a point set:II." Geometry. Computer Aided Geometric Design.18-6, p:563-85, 2001  https://doi.org/10.1016/S0167-8396(01)00051-6
  8. Ernesto Q.V. Martins, Marta M.B. Pascoal1, "A new implementation of Yen's ranking loopless paths algorithm." Quarterly Journal of the Belgian, French and Italian Operations Research Societies volume. 1, p121-33, 2003 
  9. Deok-Soo Kim KY, Youngsong Cho, Donguk Kim & Chee Yap "Shortest Paths for Disc Obstacles." Computational Science and Its Applications - ICCSA, p62-70, 2004. 
  10. Luciano Blasi, Egidio D'Amato, Massimiliano Mattei and Immacolata Notaro. "Path Planning and Real-Time Collision Avoidance Based on the Essential Visibility Graph." Applied Sciences volume 10-16, 5613, 2020.