• Title/Summary/Keyword: Unmanned aerial vehicle system

Search Result 517, Processing Time 0.022 seconds

Development of Security Functional Requirements for Secure-Introduction of Unmanned Aerial Vehicle (무인항공기의 안전한 도입을 위한 보안기능요구사항 개발)

  • Kang, Dongwoo;Won, Dongho;Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2019
  • With the possibility of wireless control of the aircraft by Nicola Tesla, Unmanned Aerial Vehicle(UAV) was mainly used for military and defense purposes with the rapid development through World War I and II. As civilian applications of unmanned aerial vehicles have expanded, they have been used with various services, and attempts have been made to control various environmental changes and risk factors of unmanned aerial vehicles. However, GPS spoofing, Jamming attack and security accidents are occurring due to the communication in the unmaned aerial vehicle system or the security vulnerability of the unmanned aerial vehicle itself. In order to secure introduction of Unmanned aerial vehicle, South Korea has established Unmanned Aerial Vehicle verification system called Airworthiness Certification. However, the existing cerfication system is more focused on test flight, design and structure's safety and reliability. In this paper, we propose a unmanned aerial vehicle system model and propose security functional requirements on unmanned aerial vehicle system in the corresponding system model for secure-introduction of Unmanned Aerial Vehicle. We suggest the development direction of verification technology. From this proposal, future development directions of evaluation and verification technology of Unmanned Aerial Vehicle will be presented.

Design and Development of Multi-rotorcraft-based Unmanned Prototypes of Personal Aerial Vehicle

  • Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • The paper presents the design, development and testing activities of the multi-rotorcraft-based unmanned aerial vehicle at the Center for Unmanned System Studies, Institut Teknologi Bandung (ITB), Indonesia. The multi-rotor system was selected as the design stepping stone for future development of personal aerial vehicle prototypes. A step-by-step design program is conducted to study the technology building blocks and critical issues associated with the design, development and operation of personal aerial vehicles. A number of multi-rotor configurations have been investigated providing basic guidelines for developing a stable unmanned aerial platform. The benefit of the presently selected configuration is highlighted and some preliminary testing results are presented.

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft (유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증)

  • Hyoung Jin Kim;Sang Eun Kwon;Young Wo Jo;Bong Gyu Kim;Eun Kyoung Go
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2023
  • This paper describes the system integration laboratory's requirement analysis, implementation, and verification for multiple-scenario unmanned aerial vehicle operation and control technology using a manned rotorcraft for Manned-Unmanned Teaming. System integration laboratory consists of manned rotorcraft flight simulation, unmanned aerial vehicle flight and mission equipment simulation, ground control system simulation for unmanned aerial vehicle control and change in the control authority between the ground control system and manned rotorcraft, and operation and control system for mission plan's writing and transmission. Each implemented simulation verified the requirements through software and hardware integration test.

Design of Real-time Video Acquisition for Control of Unmanned Aerial Vehicle

  • Jeong, Min-Hwa
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • In this paper, we analyze the delay phenomenon that can occur when controlling an unmanned aerial vehicle using a camera and describe a solution to solve the phenomenon. The group of pictures (GOP) value is changed in order to reduce the delay according to the frame data size that can occur in the moving image data transmission. The appropriate GOP values were determined through experimental data accumulation and validated through camera self-test, system integration laboratory (SIL) verification test and system integration test.

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Prototype Design for unmanned aerial vehicle-based BigData Processing (무인항공기 기반 빅데이터 처리 시스템의 프로토타입 설계)

  • Kim, Sa Woong
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • Recently, the unmanned aerial vehicle Drone technology is attracting new interest around the world. The versatilities in science, military, marketing, sports, and entertainment fields are the driving force of the drone fever. Thus, the potential power of future industrial is expected as the application range is extensive. In this paper, we design and propose the prototype of unmanned aerial vehicle-based bigdata processing system.

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.

Development of Portable Ground Control System for Operation of Unmanned Aerial Vehicle (무인항공기 운용을 위한 이동형 지상제어 시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.127-133
    • /
    • 2004
  • This paper described development of the portable ground control system(PGCS) for unmanned aerial vehicle. In the design of GCS, it upload mission planning that aircraft has to perform and has to receive position, attitude, state, navigation information all about the aircraft. Aircraft states and trajectory are displayed using this system on line. The PGCS is composed of commercial notebook computer, RF modem for communication between aircraft and PGCS, input/output board, remote control receiver, switches and lamps. Performance of this system is verified by flight test of small unmanned aerial vehicle.