• Title/Summary/Keyword: Unmanned Systems

Search Result 893, Processing Time 0.026 seconds

Attitude Dynamics Identification of Unmanned Aircraft Vehicle

  • Salman Shaaban Ali;Sreenatha Anavatti G.;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.782-787
    • /
    • 2006
  • The role of Unmanned Aircraft Vehicles(UAVs) has been increasing significantly in both military and civilian operations. Many complex systems, such as UAVs, are difficult to model accurately because they exhibit nonlinearity and show variations with time. Therefore, the control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, identification of the mathematical model is an important process in controller design. In this paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear state space model for attitude dynamics of UAV is derived and verified. Real time simulation results show that the model dynamics match experimental data.

Observer-based Fault Tolerant Controller Design for Multi-UAV Systems (다개체 무인 항공기 시스템을 위한 관측기 기반 고장포용제어기 설계)

  • Jee, Sung-Chul;Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.407-412
    • /
    • 2012
  • In this paper, we discuss an observer-based fault tolerant controller design for the unmanned aerial vehicle (UAV) systems with exogenous disturbance. To derive robust controller design conditions, we use $H_{\infty}$ design technique. The design conditions are derived in terms of linear matrix inequalities. An illustrative example is provided to show the effectiveness of the proposed methodology.

Performance Investigation of GPS/INS Ultra-tightly integration for Navigation of Unmanned Expedition Vehicles (무인탐사체 항법을 위한 GPS/INS 초강결합 성능분석)

  • Chung ,Kwang-Youn;Cho Young-Seok;Shim Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.773-779
    • /
    • 2006
  • GPS/INS integration is widely considered as main navigation systems of vehicles since GPS(Global Positioning System) and INS(Inertial Navigation System) have their own strength and weakness, respectively. Accuracy, continuity, integrity, and availability should be provided in navigation systems of vehicles. Ultra-tightly integration can improve these capacities, expecially availability of GPS. Unmanned Expedition Vehicles(UEV) must be robust against Jamming and external impact because UEV have to substitute for a man when they are in the place where they can not be controlled by a man. This paper analyzes the performance of Ultra-tightly integration and compares it with those of loosely integration and tightly integration for some trajectories

Application of Wireless Power Transmission Technology to Contactless Umbilical Connector of Unmanned Vehicle (무선 이동체의 비접촉 배꼽장치를 위한 무선전력전송 기술의 응용)

  • Shin, Yujun;Park, Jaehyoung;Kim, Jonghoon;Kwon, Byunggi;Eun, Heehyun;Ahn, Seungyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.713-722
    • /
    • 2017
  • In the future battlefield, the role of the unmanned vehicle is very important. Currently, charging and management systems for unmanned vehicles are all wired. However, for convenience and stability, it is desirable that the charging of the unmanned vehicle uses wireless power transfer system. In this paper, we have studied the application of wireless power transfer system to the charging of unmanned vehicles. Considering the size of the unmanned vehicle and the required power, the transmission coil and the receiving coil are designed through the finite element analysis based magnetic field simulation. The coil was made according to the simulation results and the circuit simulation was performed through the measured parameter values. Finally, we show that wireless power transmission can be applied to unmanned mobile charging through actual experiments.

Accuracy Assessment of Reservoir Depth Measurement Data by Unmanned Boat using GIS (GIS를 이용한 무인보트의 저수지 수심측정자료 정확도 평가)

  • Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2024
  • This study developed the procedure and method for the accuracy assessment of unmanned boat survey data, based on the reservoir water depth data of Misan Reservoir, measured by the manned and unmanned boats in 2009 by Korea Rural Community Corporation. In the first step, this study devised the method to extract the contour map of NGIS data in AutoCAD to generate easily the reservoir boundary map used to set the survey range of reservoir water depth and to test the survey accuracy. The surveyed data coordinate systems of the manned and the unmanned boat were also unified by using ArcGIS for the standards of accuracy assessment. In the accuracy assessment, the spatial correlation coefficient of the grid maps of the two measurement results was 0.95, showing high pattern similarity, although the average error was high at 78cm. To analyze in more detail assessment, this study generated randomly the 3,250m transverse profile route (PR), and then extracted grid values of water depth on the PR. In the results of analysis to the extracted depth data on PR, the error average difference of the unmanned boat measurements was 73.18cm and the standard deviation of the error was 55cm compared to the manned boat. This study set these values as the standard for the correction value by average shift and noise removal of the unmanned boat measurement data. By correcting the unmanned boat measurements with these values, this study has high accuracy results, the reservoir water depth and surface area curve with R2 = 0.97 and the water depth and storage volume curve with R2 = 0.999.

Design of Multiple Channel Wireless Remote Control System for Unmanned Vehicle (무인차량용 다중채널 무선원격 제어시스템의 설계)

  • Kim, Jin-Kwan;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • In this paper, a design of multiple channel wireless remote control system for unmanned vehicle is proposed. One of serious problems of the previous wireless remote control system is that it does not work when a control channel is damaged in case of emergency because it's composed of single control channel. Therefore, we propose the multiple channel wireless remote system which is composed of a portable wireless remote controller and a stationary wireless remote controller. The portable wireless remote controller and stationary wireless remote controller are designed and the multiple channel wireless remote control system for unmanned vehicles in developed. By applying to the unmanned vehicle to check its performance. The wireless remote control system is tested. Emergency stop using the portable wireless remote controller is tested when the stationary wireless remote controller is damaged. Also, emergency stop using the stationary wireless remote controller is tested when the portable wireless remote controller is damaged. The result of emergency stop test shows satisfied performance.

Development of the SONAR System for an Unmanned Surface Vehicle (무인수상정 탑재 소나시스템 개발)

  • Bae, Ho Seuk;Kim, Wan-Jin;Kim, Woo-Shik;Choi, Sang-Moon;Ahn, Jin-Hyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.358-368
    • /
    • 2015
  • Recently, unmanned systems are largely utilized in various fields due to the persistency and the least operational risk and an unmanned surface vehicle(USV) is the one of the representative application in the naval field. To assign multiple roles to an USV, we developed a sonar system which consists of a forward detecting sonar for the long-range detection, a downward detecting sonar for the small target scan and identification, and a strut type body for mounting sonar systems. In this paper, we described the developed sonar system for USV and the sea test results for verifying system performance. The test results showed that the developed sonar system was able to detect the underwater target about several kilometers away and could recognize a small object at the downside of the sonar system. We expect that the developed sonar system will be easily applied to other unmanned platforms without serious consideration.

Video-based Inventory Management and Theft Prevention for Unmanned Stores (재고 관리 및 도난 방지를 위한 영상분석 기반 무인 매장 관리 시스템)

  • Soojin Lee;Jiyoung Moon;Haein Park;Jiheon Kang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2024
  • This paper presents an unmanned store management system that can provide inventory management and theft prevention for displayed products using a small camera that can monitor the shelves of sold products in small and medium-sized stores. This system is a service solution that integrates object recognition, real-time communication, security management, access management, and mobile authentication. The proposed system uses a custom YOLOv5-x model to recognize objects on the display, measure quantities in real time, and support real-time data communication with servers through Raspberry Pie. In addition, the number of objects in the database and the object recognition results are compared to detect suspected theft situations and provide burial images at the time of theft. The proposed unmanned store solution is expected to improve the efficiency of small and medium-sized unmanned store operations and contribute to responding to theft.

A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity (상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어)

  • Seungdae Baek;Minseung Kim;Joohyun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.

Development Direction of Maritime Manned-Unmanned Systems through Measurement of Combat Effectiveness against Major Threats on Sea Lines of Communication (해상교통로 상 주요 위협별 전투 효과 측정을 통한 해양 유·무인 복합체계 발전방향)

  • Yong-Hoon Kim;Yonghoon Ha
    • Journal of Industrial Convergence
    • /
    • v.21 no.11
    • /
    • pp.29-41
    • /
    • 2023
  • In this study, assuming that the maritime manned-unmanned systems, which will be used as the main force of the ROK Navy in the future, conducts its sea line of communication(SLOC) protection operations, the combat effectiveness against major threats was measured, and through this, the development direction of the manned-unmanned systems was suggested. Multi-criteria decision-making techniques such as Delphi and AHP were used to measure combat effectiveness, and the AHP survey was conducted on 40 naval officers, including 25 senior officers who are well-understood in the combat effectiveness of the weapons system and MUM-T. As an evaluation index for measuring combat effectiveness, the OODA loop was set as the main attribute, followed by Observe(0.358), Orient(0.315), Act(0.217), and Decide(0.110). The combat effectiveness of each major threat in SLOC, the lowest alternative, was measured to be 1.68 times higher than the response to maritime conflicts in neighboring countries and 3.61 times higher than the response to transnational threats. These results are expected to support rational decision-making in determining the level of technology required for acquisition of marine manned-unmanned systems and establishing operational plans for naval forces.