• 제목/요약/키워드: Unmanned Ground Robot

검색결과 37건 처리시간 0.029초

다양한 센서 융합을 통한 효율적인 모바일로봇 프레임워크 설계 (On the Design of an Efficient Mobile Robot Framework by Using Collaborative Sensor Fusion)

  • 김동환;조성현;양연모
    • 대한임베디드공학회논문지
    • /
    • 제6권3호
    • /
    • pp.124-131
    • /
    • 2011
  • There are many researches in unmanned vehicles such as UGV(Unmanned Ground Vehicle), AUV(Autonomous Underwater Vehicle). In these researches, differential wheeled mobile robots are mainly used to develop the experimental stage algorithm because of the simplicity of modeling and control. Usually a commercial product used in the study, but in order to operate a commercial product to the restrictions because there would need to use a fixed protocol. Using the microprocessor makes the internal sensors(encoder and INS) and external sensors(ultrasonic sensors, infrared sensors) operate and to determine commands for robot operation. This paper propose a mobile robot design for suitable purpose.

Trend Analysis of Unmanned Technology Using Patent Information

  • Park, Jaeyong;Kang, Dongsu
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.89-96
    • /
    • 2017
  • Artificial intelligence and robot technology have been received attention as core technologies of the 4th industrial revolution. This paradigm change of science technology raises the importance of unmanned technology field. This paper categorizes unmanned technology as unmanned ground system, unmanned maritime system, and unmanned aircraft system, And it analyzes 557 cases of open patents and classifies each sort of specific technology elements. After then patent information, which were classified by technology, by patent assignees, and by IPC codes, covers unmanned technology maturity, development direction of research and core technology trends. This research provides directions of unmanned technology research and diverse field technology development through cooperation with various perspectives of quantitative analysis of patents.

무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 - (How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots -)

  • 김율희;최용훈;김진오
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.205-213
    • /
    • 2017
  • 본 논문은 국방로봇의 하나인 무인지상차량이 자율주행 시 요구되는 기능수준을 도출하기 위한 방법에 대한 연구이다. 기존의 무기체계는 운용환경에 크게 영향을 받지 않는 반면 국방로봇은 동일한 플랫폼이라 할지라도 운용환경 변화에 따라 다른 성능이 표출된다. 만약 운용제대에 따라 무기체계인 국방로봇의 성능이 각각 다르게 발현된다면 임무수행의 결과는 달라질 것이다. 그러므로 소요군은 국방로봇에 요구하는 기능의 수준을 명확히 도출해야 최적의 국방로봇을 연구개발 할 수 있다. 본 논문에서는 국방로봇의 주요 기능 중 하나인 자율주행을 중심으로 하여 무인지상차량의 요구기능수준을 도출하는 방법을 제시하였다. 소요군 내 각 운용제대별로 무인지상차량이 자율주행 시 요구되는 기능의 수준을 평가 할 수 있는 문항과 운용자의 개입정도에 따른 자율주행 기능의 요구수준을 나타내었으며, 더불어 여러 운용환경에 따른 변수 중에서 지상 환경에 대한 수준을 제시하였다.

안정성 향상을 위한 자율 주행 로봇의 실시간 접촉 지면 형상인식 (Real-time Recognition of the Terrain Configuration to Increase Driving Stability for Unmanned Robots)

  • 전봉수;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.283-291
    • /
    • 2013
  • Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor(exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Thereby, UGVs have some difficulties regarding to finding optimal driving conditions for maximum maneuverability. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit(IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

모바일 경계로봇의 안정화 시스템 테스트를 위한 병렬로봇의 개발 (Development of a Parallel Robot for Testing a Mobile Surveillance Robot Stabilization System)

  • 김도현;권정주;김성수;최희병;박성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.735-738
    • /
    • 2008
  • A 6 D.O.F Stewart platform type parallel robot has been developed as a simulator to test the surveillance robot stabilization control. Since the surveillance robot is installed on the unmanned ground vehicle (UGV), it is required to have a stabilization control system to compensate the disturbance from the UGV. PID control scheme has been applied to the parallel robot to generate controlled motion following the input motion.

  • PDF

다리 수 조절이 가능한 모듈러 크롤러의 설계 및 6족 로봇의 주행 성능 평가 (Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot)

  • 임소정;백상민;이종은;채수환;유재관;조용진;조규진
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.278-284
    • /
    • 2019
  • Legged locomotion has high mobility on irregular surfaces by touching the ground at discrete points. Inspired by the creature's legged locomotion, legged robots have been developed to explore unstructured environments. In this paper, we propose a modular crawler that can easily adjust the number of legs for adapting the environment that the robot should move. One module has a pair of legs, so the number of legs can be adjusted by changing the number of modules. All legs are driven by a single driving motor for simple and compact design, so the driving axle of each module is connected by the universal joint. Universal joints between modules enable the body flexion for steering or overcoming higher obstacles. A prototype of crawler with three modules is built and the driving performance and the effect of module lifting on the ability to overcome obstacles are demonstrated by the experiments.

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구 (Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle)

  • 최상영;양지현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

전복 방지를 위한 소형 무인주행로봇의 자세 안정화 알고리즘 (Posture Stabilization Algorithm of A Small Unmanned Ground Vehicle for Turnover Prevention)

  • 고두열;김영국;이상훈;지태영;김경수;김수현
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.965-973
    • /
    • 2011
  • Small unmanned ground vehicles(SUGVs) are typically operational on unstructured environments such as crashed building, mountain area, caves, and so on. On those terrains, driving control can suffer from the unexpected ground disturbances which occasionally lead turnover situation. In this paper, we have proposed an algorithm which sustains driving stability of a SUGV as preventing from turnover. The algorithm exploits potential field method in order to determine the stability of the robot. Then, the flipper and manipulator posture of the SUGV is optimized from local optimization algorithm known as gradient descent method. The proposed algorithm is verified using 3D dynamic simulation, and results showed that the proposed algorithm contributes to driving stability of SUGV.

JAUS표준 기반의 모바일 로봇 원격제어 시스템 구현에 관한 연구 (A Study on the Implementation of Mobile Robot Remote Control System Based on JADS Standard)

  • 정성욱;조상현;김태효;박영석
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.230-237
    • /
    • 2008
  • 최근 국내외에서 무인 자동차용 로봇 개발에 관한 많은 관심과 개발 경쟁이 한층 더해가고 있다. 그러나 무인 자동차용 로봇을 효과적으로 제어하기 위한 표준화된 아키텍쳐의 부재로 개발 기간의 장기화 되고, 다른 무인 자동차용 로봇과 호환성이 저하되는 어려움이 많았다. 따라서 본 논문에서는 무인 자동차용 로봇 표준 아키텍쳐인 JAUS 기반으로 모바일 로봇을 원격 제어하는 시스템을 구현하였다. 구현된 모바일 로봇은 무선 LAN UDP/IP 프로토콜 기반으로 JAUS 명령 메시지를 사용해서 원격제어시스템과 통신한다. 본 연구의 유효성은 구현 로봇의 주행 및 장애물인식 성능에 대한 실험적 결과를 통해 보여진다.

  • PDF