• Title/Summary/Keyword: Unmanned Aerial Vehicles (UAV's)

Search Result 71, Processing Time 0.029 seconds

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Utilization of UAV and GIS for Efficient Agricultural Area Survey (효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용)

  • Jeong, Woo-Chul;Kim, Sung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.

Data-link antenna for mounting low-RCS Unmanned Aerial Vehicles(UAV) (저피탐 무인기 탑재를 위한 데이터링크용 안테나에 관한 연구)

  • Park, Jin-Woo;Jung, Eun-Tae;Park, Il-Hyun;Seo, Jong-Woo;Jung, Jae-Soo;Yu, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1110-1116
    • /
    • 2021
  • In this paper, we propose a conformal Ku-band data link antenna to ensure low RCS of stealth UAV. As a phased array antenna with electrical beam steering function, a transmitter and a receiver were designed and manufactured for FDD communication, respectively. Each antenna is designed as a 12*12 planar array antenna and has a function to form a uni-directional pattern and a bi-directional pattern through phase control of unit elements. The beam steering range is designed to be able to steer up to 60 degrees in theta direction and 360 degrees in the phi direction. As a result of manufacturing and measurement, the conformal type radome has low transmission loss and meets the required specifications including system performance. The feasibility of mounting the stealth UAV has been confirmed, and future research directions such as interworking of baseband devices and conversion to digital beam steering function are suggested.

Development and Test of a Docking Type Automatic Landing System for Shipboard Landing (드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험)

  • Minsu Park;Sungyug Kim;Hyeok Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • The paper presents a docking-type automatic landing system that works in tandem with Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The system utilizes a pyramid-shaped landing gear and pad for effective landing. In marine environments, a docking device guides the drone to land securely. To test the system, a ship's behavior was simulated using a 3-DoF motion platform, and the successful operation and utility of the docking-type automatic landing system were demonstrated.

A Data Ferrying-Based Virtual Full-Duplex Relaying Scheme with Two UAVs (두 UAV를 활용하는 데이터 페리 기반의 가상 전이중 중계전송 기법)

  • Woo, Dong Hyuck;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1639-1645
    • /
    • 2020
  • In this paper, we propose a virtual full-duplex relaying scheme based on data ferrying using two unmanned aerial vehicles (UAVs). By utilizing high mobility of two UAVs, the proposed relaying scheme can make each UAV communicate with a source node or a destination node when the UAV is near the source node or the destination node. The proposed relaying scheme can overcome the performance limitations of the half-duplex relaying and the implementation constraints of the full-duplex relaying. In addition, we propose an algorithm to shift the center point of two UAVs' trajectory with consideration of inter-relay interference (IRI). We show the simulation results of our proposed trajectory's center point shift algorithm. From the simulation results, it is shown that our proposed relaying scheme can achieve higher end-to-end spectral efficiency (SE) than the conventional static relaying scheme.

Augmented Reality and Virtual Reality Technology Trend for Unmanned Arial Vehicles (무인항공기를 위한 증강/가상현실 기술 동향)

  • Bang, J.S.;Lee, Y.H.;Lee, H.J.;Lee, G.H.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.117-126
    • /
    • 2017
  • With the advances of high-performance, lightweight hardware components and control software, unmanned aerial vehicles (UAVs) have expanded in terms of use, not only for military applications but also for civilian applications. To complete their task at a remote location, UAVs are generally equipped with a camera, and various sensors and types of hardware devices can be attached according to the particular task. When UAVs capture video images and transmit them into the user's interface, augmented reality (AR) and virtual reality (VR) technologies as a user interface may have advantages in controlling the UAV. In this paper, we review AR and VR applications for UAVs and discuss their future directions.

Development of a UAV Flight Control System Using a Low Cost GPS/IMU (저가형 GPS/IMU를 이용한 UAV 비행 제어 시스템 개발)

  • Koo, Won-Mo;Chun, Se-Bum;Won, Dae-Hee;Kang, Tae-Sam;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.502-510
    • /
    • 2008
  • UAVs(Unmanned Aerial Vehicles) have many applications in military and commercial areas. The flight control system of UAVs is more important than manned aircraft's because the mission of UAVs must be operated without a human pilot. But very heavy and expensive navigation system makes it difficult to develop UAV flight control system. In this research, GPS/IMU integrated navigation filter was developed for light weight/low cost flight control system of small UAVs. With this navigation filter, full flight control system which has real time operating capability has been developed. The performance of the flight control system is basically checked by HILSIM (Hardware In the Loop SIMulation). Finally, the flight control system is verified by showing performance test result under real flight environment.

A Study on Establishment of Civil UAV's Flight Test Operation Procedures for Goheung Flight Test Aerodrome (국가 비행종합성능시험장에서의 민간 무인항공기 비행시험 운용절차 수립에 관한 연구)

  • Lim, Ji-Sung;Park, Dae-Jin;Jeon, Hyun-Woo;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.170-176
    • /
    • 2017
  • In recent years, Unmanned Aerial Vehicles (UAVs) were actively developed in various fields. In development process of UAVs, flight test is performed to ensure that minimum safety requirements and technical requirements are met. By constructing flight test infrastructure such as takeoff and landing facilities, operation procedure, and equipments, flight test can be performed effectively. In this paper, operation procedures of civil UAV's flight test are proposed. The procedures proposed are composed by two main steps: first, planning and permitting procedure of flight test. Secondly, execution and control procedure of flight test.

Operation Model for Forest-UAV for Detection of Forest Disease (산림병해충 검출을 위한 산림무인항공기 운영 모델)

  • Byun, Sangwoo;Kang, Yunhee
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.3-9
    • /
    • 2020
  • In Korea, 63% of the nation's land is made up of forests, and the average temperature of the earth has been increasing. Forest service has been operating a proactive control system for preventing the spread of forest pests such as Pine wilt disease. but there were some hurdles in timely control due to weather, topography and manpower management difficulties. In this paper, we propose a model for building fast, accurate and efficient control system by categorizing the damage and dead wood automatically based on the images acquired using small unmanned aerial vehicles based on information and communication technology. In particular, the proposed model establishes an effective response system for government affairs through cooperation in the private sector. It can also create new jobs in the unmanned aerial vehicle business and service industries.

  • PDF

Monitoring butterflies with an unmanned aerial vehicle: current possibilities and future potentials

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • The world of technology is pleasantly evolving to a stage where small robotic aid may be used to ease the work of researchers, and to one day bring more accurate results than the current human abilities allow. In the research field of species monitoring in biology, unmanned aerial vehicles (UAVs) have begun to play an important role in how research is approached, analyzed, and then applied for further investigation, particularly by focusing on a single species. This paper uses data that has been collected from June to October 2015, to demonstrate how the innovative idea of using UAVs to monitor a particular species will bring a positive development in conservation research, and what it was able to achieve in this research field so far. More precisely, we examine the potential of UAVs to take center stage in future research, as well as their current accuracy. This paper describes the use of the commercially available Phantom 2 Vision+ for the detection, assessment, and monitoring of the butterfly species Libythea celtis, demonstrating how it can help the monitoring of butterflies and how it could be developed for even more adventurous and detailed research in the future.