• Title/Summary/Keyword: University of the Future

Search Result 28,551, Processing Time 0.067 seconds

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

The Conservation Treatment for the Mattress from National Folklore Cultural Heritage, the Red-lacquered Furniture with Inlaid Mother-of-pearl Design Used by Empress Sunjeonghyo and Comparative Study of Manufacturing Techniques (국가민속문화재 전 순정효황후 주칠 나전가구(傳 純貞孝皇后 朱漆 螺鈿家具) 매트리스의 보존처리 및 제작 기법 비교)

  • Park, Hyungho;Kim, Jongsu;Kim, Suchul;Keum, Jongsuk;Jang, Jongmin;Kim, Suha;Park, Changyuel
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.220-237
    • /
    • 2021
  • This study carried out the conservation treatment for the mattress put on the bed, which is one of 4 items in National Folklore Cultural Heritage, the Red-lacquered Furniture with the inlaid mother-of-pearl design used by Empress Sunjeonghyo (presumed), after identifying the characteristics of the manufacturing techniques and the used materials. And the study intends to compare it with the mattress placed in the Daejojeong in the Changdeokgung Palace in order to identify the characteristics of mattresses domestically used during the 1920s and 1930s. From the analysis of the mattress presumably used by Empress Sunjeonghyo, it was identified that the mattress frame was made of pinaceous hemlock spruce while the webbing and twine in the structural parts were made of jute. The findings are as follows: the burlap had a filling material that was made of jute; the straw mat was made from Oryza; and, the rest of the filling material was cotton. Rayon was used for the top cover while cotton was used for the bottom. As a result of research on the materials and the inner structure, it was found that mattress was manufactured in the form of the upholstery style mainly found in chairs and day-beds in Western furniture. Based on analysis results, materials identical to the original were adopted during the conservation treatment. Next, the process of dismantling, cleaning, repair, reinforcement and assembling was conducted. During the dismantling process, the top cover was newly discovered and some letters (Yokohama, Kobe, and Joseon) were found in the burlap filling, but there was no trace which can clarify its maker or production place. dry cleaning was carried out on the structural parts, filling materials, and the cover, and then the repair and reinforcement were done, preserving the existing materials in the upholstery structure and using the same materials for conservation. The webbing in the structural parts was reinforced using materials identical to the original, and the twine was used for arranging and fixing the springs into wooden frames. For the damaged cotton cloth and burlap, reinforcement materials identical to the original were put over it and sown. For the damaged area of the top cover, reinforcement cloth was cut and then added inside and the damaged area was sown. Assembling was carried out in the reverse order of the dismantling. After the burlap identical to the original material was inserted into the areas in contact with the springs and then fastened, a filling pad, reinforcement cloth, a straw mat, cotton cloth, cotton felt, wide cotton cloth for protecting the cover, and the cover were layered and fastened with tacks. The two mattresses used by Empress Sunjeonghyo differed only by the period of production and followed the same Western upholstery style consisting of the frames, filling materials, and covers. During the conservation treatment process, a velvet cover was newly discovered and the traces of repair in the past were found. Furthermore, identifying straw mats, straw bags, and straws for filling material, this study confirmed changes in the materials used according to the production environment. In the future, it is expected to see changes in the conservation materials during the conservation treatment and manufacturing techniques used for chairs and sofas in the upholstery style belonging to the modern cultural artifacts.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

Recognition and Attitude to Implement at ion of Service Area Assigned System of Public Health Programs among the Health Officer (공공보건사업의 지역담당제 실시에 관한 보건기관 근무 공무원의 인식과 태도)

  • Kim, Mi-Soon;Lee, Moo-Sik;Kim, Nam-Song
    • Journal of agricultural medicine and community health
    • /
    • v.26 no.2
    • /
    • pp.15-41
    • /
    • 2001
  • Since medical clients and the community they live in are expected to be center of future public health and medical care system, new service programs must be developed with patients focused on in line with widening public access of information and social participation. Patients- focused service shall mean the area- oriented provision of public health service. In this study, health officers working at public health centers, public health sub- centers and medical offices in Jeonbuk- do area were taken for population in order to investigate their attitudes toward and knowledge about the service area assigning system under the public health programs. Findings from the survey to 260 health officers, divided by general category, are as follows : Government officers at public health organizations appeared to have high grade of understanding to the service area assigning system and also great appreciation for the necessity of it. Regarding the timing for the system to be introduced, they support the gradual implementation and, as for the type of service to be provided, they preferred home nursing and treatment of chronic diseases. Highly positive responses were centered on the health classes under the health promotion projects, and as far as health projects for the old are concerned, services for home nursing, for the disabled and for home- alone people are favored most. On the other hand, budgeting, manpower and reorganization are rated as prerequisite to establishment of the service area assigning system. From the viewpoint of system side, the improvement of working conditions is rendered as most urgent, while the information system for establishing the service area assigning system is conceived far from satisfactory. Proper assignment of specialists was noted as mostly important to establish the delivery system for medical service through the service area assigning system by team. As merits of the service area assigning system, it is pointed out that, through the system, health clients can better be managed and the nursing quality will be improved thank to the enhanced specialization. It is also perceived that the district health service is not well prepared to respond to the increased and diversified needs of community people and, furthermore, service programs of health centers have not been fully developed. The most serious problem standing in the way to expansion of health projects is, it is noted, uniformity (formality) of the project. Based on the results of the survey which suggest time has ripen to introduce the service area assigning system, following strategies are proposed to anchor down the system as soon as possible: First, we should introduce the system gradually, starting from the area selected, and in consideration of area specialities, refraining from the hitherto stereotyped way of providing health service. Second, we should seek to properly assign the specialists and improve the working conditions of the assigned officers by securing sufficient budget, since it is a most urgent step to lay foundation for the service area assigning system. Third, best service program should be developed to meet the satisfaction of community people by responding to their needs and solidifying the management of medical clients. Fourth, wide scope of study should further be conducted in order to help this system take roots in the central living of community residents since pilot project on the experimental base attended by specialists only can not win popularity among the masses.

  • PDF

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Developing a Scale for Measuring the Corporate Social Responsibility Activities of Korea Corporation: Focusing on the Consumers' Awareness (한국형 기업의 사회적 책임활동 측정을 위한 척도 개발 연구: 소비자 인식을 중심으로)

  • Park, Jongchul;Kim, Kyungjin;Lee, Hanjoon
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.27-52
    • /
    • 2010
  • It is not new that today's business organizations are expected to exhibit ethical and moral management and to carry out social responsibility as a good corporate citizen. Since South Korea emerged as a newly industrialized country during the 1980s, Korean corporations have become active in carrying out their social responsibility as a good corporate citizen to society. In spite of the short history of corporate social responsibility, Korean companies have actively participated in corporate philanthropy. Corporations' significant donations to various social causes, no-lay-off policies, corporate volunteerism and green marketing are evidences of their commitment to corporate citizenship. Corporate social responsibility is now an essential management practice whereby corporation can strengthen its sustainable value creation processes by enhancing the trust assets underlying the relationships between the business and the stakeholders. Much of the conceptual work in the area of corporate social responsibility(CSR) has originated from researches conducted in the management field. Carroll(1979) proposed that corporations have four types of social responsibilities: economic, legal, ethical and philanthropic responsibility. Most past research has investigated CSR and its impact on consumers' attitudes toward the corporations and corporate performances. Although there exists a large body of literature on how consumers perceive and respond to CSR, the majority of past studies were conducted in the United States. The stability and applicability of past findings need to be tested across different national/cultural settings, especially since corporate social responsibility is a reflection of implicit conformation with the expectations and criticism that society may have toward a corporation(Matten and Moon, 2004). In this study, we explored whether people in Korea perceive CSR of Korean corporations in the same four dimensions as done in the United States and what were the measurement items tapping each of these four dimensions. In order to investigate the dimensions of CSR and the measurement items for CSR perceived by Korean people, nine focus group interviews were conducted with several stakeholder groups(two with undergraduate students, two with graduate students, three with general consumers, and two with NGO groups). Scripts from the interviews revealed that the Korean stakeholders perceived four types of CSR which are the same as those proposed by Carroll(1979). However we found CSR issues unique to Korean corporations. For example for the economic responsibility, Korean people mentioned that the corporation needed to contribute to the economic development of the country by generating corporate profits. For the legal responsibility, Koreans included the "corporation need to follow the consumer protection law." For the ethical responsibility, they considered that the corporation needed to not promote false advertisement. In addition, Koreans thought that an ethical company should do transparent management. For the philanthropic responsibility, people in Korea thought that a corporation needed to return parts of its profits to the society for the betterment of society. The 28 items were developed based on the results of the nine focus group interviews, while considering the scale developed by Maignan and Ferrell(2001). Following the procedure proposed by Churchill(1979), we started by developing an item poll consisting of 28 items and purified the initial pool of items through exploratory, confirmatory factor analyses. 176 samples were sued for this analysis. Confirmatory factor analysis was performed on the 28 items in order to verify the underlying four factor structure. Study 1 provided new measurement items for tapping the Korean CSR dimensions, which can be useful for the future studies exploring the effects of CSR on Korean consumers' attitudes toward the corporations and corporate performances. And we found the CSR scale(17 items) has good reliability, discriminant validity and nomological validity. Economic Responsibility: "XYZ company continuously improves the quality of our products", "XYZ company has a procedure in place to respond to customer complaint", "XYZ company contributes to the economic development of our country by generating profits", "XYZ company is eager to hire people". Legal Responsibility: "XYZ company's products meet legal standards", "XYZ company seeks to comply with all laws regulating hiring and employee benefits", "XYZ company honors contractual obligations to its suppliers", "XYZ company's managers try to comply with the law related to the business operation". Ethical Responsibility: "XYZ company has a comprehensive code of conduct", "XYZ company does not promote a false or misleading advertisement", "XYZ company seems to conduct a transparent business", "XYZ company does a fair business with its suppliers or sub-contractors". Philanthropic Responsibility: "XYZ company encourages partnerships with local businesses and schools", "XYZ company supports sports and cultural activities", "XYZ company gives adequate contributions to charities considering its business size", "XYZ company encourages employees to support our community". Study 2 was condusted for comprehensive validity. 655 samples were used for this anlysis. Collected samples were tested by factor analysis and Crnbach's Alpha coefficiednts and were found to be satisfactory in terms of validity and reliability. Furthermore, fitness of the measurement model was tested by using conformatory factor analysis. χ2=880.73(df=160), GFI=0.891, AGFI=0.854, NFI=0.908, NNFI=0.913, RMR=0.059, RMESA=0.070. We hope that CSR scale could greatly facilitate research on Corporate social resposibility, it is by no means the final answer.

  • PDF