• Title/Summary/Keyword: Unit Weight

Search Result 2,348, Processing Time 0.036 seconds

Comparison of X-ray Shielding Performance according to the Weight of unit volume of Heavy Weight Concrete Utilizing Electric Arc Furnace Oxidizing Slag. (전기로 산화슬래그 골재를 활용한 중량 콘크리트의 단위 용적 중량 변화에 따른 X-선 차폐 성능 비교)

  • Lim, Hee Seob;Lee, Han Seung;Choi, jae Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.35-36
    • /
    • 2013
  • Electric arc furnace oxidizing slag from massively produced steel slag has been used in road bases and subbases, hot mix asphalt, and landfill. Electric arc furnace oxidizing slag contains iron (15%~30%) and has a high density of 3.0~3.7 ton/m3. Depending on the type and amount of concrete aggregates, the radiation-shielding characteristics can vary. Therefore, aggregates of electric arc furnace oxidizing slag can be considered for the production of radiation-shielding concrete. The experimental design of this study is experiments on Compressive strength experiments, X-ray irradiation experiments, and experiments related to the unit volume weight were carried out on hardened concrete. This experiment compared the performance evaluation of radiation shielding of concrete using electric arc furnace oxidizing slag.

  • PDF

A Proposal of Tensile Strength Prediction Models Considering Unit Weight of Concrete (콘크리트의 기건 단위질량을 고려한 인장강도 예측모델 제안)

  • Sim, Jae Il;Yang, Keun Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.107-115
    • /
    • 2012
  • The present study evaluates the validity of different equations specified in code provisions and proposed by the existing researchers to predict the concrete tensile capacities (direct tensile strength, splitting tensile strength and modulus of rupture) using a comprehensible database including 361 lightweight concrete (LWC), 1,335 normal-weight concrete (NWC) and 221 heavy-weight concrete (HWC) specimens. Most of the equations express the concrete tensile strengths as a function of its compressive strength based on the limited NWC concrete test data. However, the present database shows that the concrete tensile capacities are significantly affected by its unit weight as well. As a result, the inconsistency between experiments and predictions by the different models increases when the concrete unit weight is below 2,100 kg/$m^3$ and concrete compressive strength is above 50 MPa. On the other hand, new models proposed by the present study considering the concrete unit weight predict the tensile strengths of concrete with more accuracy.

Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment (모형실험장치를 이용한 불포화토의 강우 침투특성 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Effects of Growth Characteristics on the Yield, Quality, Chemical Contents and Physical Properties in some Burley Tobacco Varieties (버어리종 담배 품종의 생육특성이 수량, 품종, 내용성분 및 물리성에 미치는 영향)

  • 김상범;백기현;한철수;추홍구
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.4 no.2
    • /
    • pp.41-50
    • /
    • 1982
  • To investigate tile effects of growth characteristics on the yield, price per Kg, chemical contents and physical properties in Burley tobacco, ten varieties including Burley 21 were tested in this study. The results obtained are summarized as follows. 1 Forty to fifty days after transplanting, CCR (Crop Growth Rate) was the highest. RCR (Relative Growth Rate) increased up to 40 days, but decreased 50 days when maturation began. High- yielding varieties showed high CCR and RCR till 60 days. 2. Total alkaloid content of cured leaf increased about three times than that of topping stage, but the increased rates were some what different among varieties. 3. Leaf area, stalk diameter, stalk height and days to flower showed positive correlations to yield, whereas leaf thickness and weight per unit leaf area showed negative. 4 Varieties which are high in cured leaf weight ratio and weight per unit leaf thickeners showed relatively poor quality. 5 Nitrogen content was high in leafy and larger stalk diameter variety. 6. There are positive correlation between weight per unit leaf thickness and filling power. The time of combustion was positively correlated to leaf thickness and weight Per unit leaf. 7. It can be concluded that many characteristics are related to the yield, but not quality. It is, there fore, easy to Predict tile yield, but difficult to forecast the qualiffy.

  • PDF

Engineering Properties of Surlightweight Polymer Concrete (초경량 폴리머 콘크리트의 공학적 특성)

  • 성찬용;김경태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.75-81
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. The unit weight was in the range of 0.849~0.969t/$m^3$, the unit weights of those concrete were decreased by 58 ~ 63% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, and compressive strength was increased by 93% and bending strength by 364% than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2, 346~2, 702m/s, which was low compared to that of the normal cement concrete. 4. The dynamic modulus of elasticity was in the range of $1.561{\times} 10{^5}~1.916{\times} 10{^5}kgf/cm^2$, which was approximately 52~98% of that of the normal cement concrete. 5. The compressive and bending strength were increased with the increase of unit weight. But, the dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with the increase of unit weight.

  • PDF

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

Children서s Understanding on Scientific Units in Elementary School Science Textbooks (초등학교 과학 교과서에서 사용되는 단위에 대한 아동들의 이해도)

  • 김성규;서승조;조태호;백남권;박강은;공정선
    • Journal of Korean Elementary Science Education
    • /
    • v.21 no.2
    • /
    • pp.201-212
    • /
    • 2002
  • This paper aims to find out how did elementary students understand scientific units in science textbooks. The subjects were 191 students of the 6th grade from 7 elementary schools in 3 different areas, consisting of 70 from 4 village schools of, 64 from 2 town schools of Gyeongnam province, and 57 from one city school in Ulsan Metro City. A test was developed based on the analysis of scientific units in the science textbooks and teacher's manuals constructed according to the 6th and 7th National Science Curriculum. The understanding of elementary students' on the scientific units(Temperature, Length, Weight, Volume, Speed, Plane Angle) were surveyed. The result are as follows: Regarding the temperature unit, the students generally well understand why to measure and how to read temperature, but had some problem in recording it, in confusion with the plane angle sign. As for the length unit, they obtained high scores in understanding the purpose of measuring length as well as recording and reading it. Which indicates that they are well aware of and use the unit appropriately. With respect to the weight unit, they got high scores in reading and recording weight, which means most students have no problem using the unit. However, it was found that they do not understand why to use the plate balance scale. The volume unit was one in which the students got relatively lower scores. They do not perceive the object of using a scale cylinder and confuse it with a device of length measurement. The unit of speed is the most difficult one for children's of science to understand, presumably, because it is an derived unit from two basic units. It is also assumed that the students got the highest score in the plane angle unit because they studied the unit immediately before the test. From the children's understanding of science units above the teacher's understanding and teaching methods presumed to play a major role for children to understand and use the science units properly.

  • PDF

Calculation of Composite Desirability Function According to the Measurement Unit and Numerical Pattern of Characteristics in the Multiple Response Analysis (MRA에서 특성값의 측정단위와 수치형태에 따른 종합 만족도 산출 방법)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.565-572
    • /
    • 2009
  • This paper presents the optimization steps with weight and importance of estimated characteristic values in the multiresponse surface analysis(MRA). The research introduces the shape parameter of individual desirability function for relaxation and tighening of specification bounds. The study also proposes the combinded desirability function using arithmetic, geometric and harmonic means considering the measurement unit and numerical pattern.

  • PDF

Characteristics of concrete intensity using high early strength AE water reducing agent (조강형 AE감수제를 사용한 콘크리트의 강도발현 특성)

  • Kim, Jung-Tai;Kim, Seung-Han;Jang, Seck-Soo;Jung, Yong-Wook;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.793-796
    • /
    • 2008
  • Recently early strength concrete has been required for economical assurance and the prevention of frost damage in winter through air reduction in construction of concrete structures. This study presented the optimum condition revealing compressive strength 5MPa which has the possibility of removal of form in 24 hours, and researched the changes of unit weight of cement types of high early strength AE water reducing agents, characteristic of compressive strength expression as cure temperature conditions and slump or airspace. Test results showed at $15^{\circ}C$ with compressive strength of 5MPa that premature removal of form was possible in case of using highly early strength PC water reducing agent with unit weight of cement 360 ; 22hours faster than 10, unit weight 360 ; 20hours faster than 7, unit weight 390 ; 18 hours faster than 4 comparing with OP water reducing agent. And at $5^{\circ}C$ in case of using highly early strength PC water reducing agent with unit weight of cement 330 ; 32hours faster than 10, unit weight 360 ; 30hours faster than 7, unit weight390 ; 27hours faster than 4 comparing with OP water reducing agent. Therefore as the temperature rises $10^{\circ}C$, compressive strength of 5MPa reaching hour shortens 10 hours.

  • PDF