• 제목/요약/키워드: Uniformly convex Banach space

검색결과 59건 처리시간 0.026초

CONVERGENCE OF VISCOSITY APPROXIMATIONS TO FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.81-95
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T\;:\;C\;{\rightarrow}\;E$ a nonexpansive mapping satisfying the weak inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For $f\;:\;C\;{\rightarrow}\;C$ a contraction and $t\;{\in}\;(0,\;1)$, let $x_t$ be a unique fixed point of a contraction $T_t\;:\;C\;{\rightarrow}\;E$, defined by $T_tx\;=\;tf(x)\;+\;(1\;-\;t)Tx$, $x\;{\in}\;C$. It is proved that if {$x_t$} is bounded, then $x_t$ converges to a fixed point of T, which is the unique solution of certain variational inequality. Moreover, the strong convergence of other implicit and explicit iterative schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm.

  • PDF

APPROXIMATION RESULTS OF A THREE STEP ITERATION METHOD IN BANACH SPACE

  • Omprakash Sahu;Amitabh Banerjee
    • Korean Journal of Mathematics
    • /
    • 제31권3호
    • /
    • pp.269-294
    • /
    • 2023
  • The purpose of this paper is to introduce a new three-step iterative process and show that our iteration scheme is faster than other existing iteration schemes in the literature. We provide a numerical example supported by graphs and tables to validate our proofs. We also prove convergence and stability results for the approximation of fixed points of the contractive-like mapping in the framework of uniformly convex Banach space. In addition, we have established some weak and strong convergence theorems for nonexpansive mappings.

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo;Park, Jong-Seo;Park, Eun-Hee
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.275-285
    • /
    • 1997
  • Let E be a uniformly convex Banach space with a uniformly G$\hat{a}teaux differentiable norm, C a nonempty closed convex subset of $E, T : C \to E$ a nonexpansive mapping, and Q a sunny nonexpansive retraction of E onto C. For $u \in C$ and $t \in (0,1)$, let $x_t$ be a unique fixed point of a contraction $R_t : C \to C$, defined by $R_tx = Q(tTx + (1-t)u), x \in C$. It is proved that if ${x_t}$ is bounded, then the strong $lim_{t\to1}x_t$ exists and belongs to the fixed point set of T. Furthermore, the strong convergence of ${x_t}$ in a reflexive and strictly convex Banach space with a uniformly G$\hat{a}$teaux differentiable norm is also given in case that the fixed point set of T is nonempty.

  • PDF

STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATES FOR ASYMPTOTICALLY NONEXPANSIVE MAPS WITH NEW CONTROL CONDITIONS

  • Eldred, A. Anthony;Mary, P. Julia
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1271-1284
    • /
    • 2018
  • In this paper, we establish strong convergence of the modified Ishikawa iterates of an asymptotically non expansive self-mapping of a nonempty closed bounded and convex subset of a uniformly convex Banach space under a variety of new control conditions.

A NEW ITERATION METHOD FOR FIXED POINT OF NONEXPANSIVE MAPPING IN UNIFORMLY CONVEX BANACH SPACE

  • Omprakash, Sahu;Amitabh, Banerjee;Niyati, Gurudwan
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.665-678
    • /
    • 2022
  • The aim of this paper is to introduce a new iterative process and show that our iteration scheme is faster than other existing iteration schemes with the help of numerical examples. Next, we have established convergence and stability results for the approximation of fixed points of the contractive-like mapping in the framework of uniformly convex Banach space. In addition, we have established some convergence results for the approximation of the fixed points of a nonexpansive mapping.