COMMON FIXED POINTS ON UNIFORMLY CONVEX BANACH SPACES

ZE-QING LIU

Dept. of Mathematics, Liaoning Normal University, Dalian, Liaoning, 116022, P.R. China.

Let K be a nonempty subset of a uniformaly convex Banach space X. K is said to be a T-regular set if $T: K \to K$ and $\frac{1}{2}(x+Tx) \in K$ for $x \in K$. Recently Veeramani [2] has proved that every convex set invariant under a map T is a T- regular set and a T-regular set need not be a convex set.

Let T be a family of maps from K into itself. K is called T-regular provided that each $T \in T$ is T-regular. The main purpose in this paper is to give some properties of the set of common fixed points of a family of commuting maps over a nonempty weakly compact T-regular subset of a uniformly convex Banach space. Our results extend properly the main results of Browder [1] and Veeramani [2]. Throughout this paper $\mathbb R$ is the set of all real numbers, $\delta(K)$ and F_T denote the diameter of K and the set of common fixed points of T. For $x \in X$, define $\delta(x, K) = \sup_{y \in K} \|x - y\|$. Let T be a self map of K, F_T denote the set of fixed points of T.

LEMMA 1 [2]. Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be a collection of T-regular subsets of a vector space X. Then $\bigcap_{{\alpha}\in I}A_{\alpha}$ is a T-regular set.

LEMMA 2 [2]. Let C be a bounded T-regular subset of a uniformly convex Banach space X. Then either Tx = x for all $x \in C$ or there exists $w \in C$ such that $\delta(w, C) < \delta(C)$.

The following result improves Theorem 1.1 of Veeramani[2].

LEMMA 3. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X. Further for each weakly closed T-regular subset C of K with $\delta(C) > 0$, there exists some $\beta \in (0,1)$ such that

(1)
$$||Tx - Ty|| \le \max\{||x - y||, \min\{||x - Ty||, ||y - Tx||\}, \beta\delta(C)\}$$

Received November 20, 1993.

Key Words and Phrases-Uniformly convex Banach space, common fixed point, family of commuting maps.

for all $x, y \in C$. Then $F_T \neq \phi$.

Proof. Let H be the collection of all nonempty weakly closed, T- regular subset of K. By Lemma 1 and Zorn's lemma H has a minimal element, say, C. We assert that Tx = x for all $x \in C$. Otherwise there exists $x \in C$ such that $x \neq Tx$. By Lemma 2 there exists $w \in C$ and $u \in (0,1)$ such that $\delta(w,C) \leq \alpha \delta(C)$. It follows from hypothesis that there exists $\beta \in (0,1)$ such that for each $y \in C$,

$$||Tw - Ty|| \le \max\{||w - y||, \min\{||w - Ty||, ||y - Tw||\}, \beta\delta(C)\}$$

 $\le \max\{\delta(w, C), \min\{\delta(w, C), ||y - Tw||\}, \beta\delta(C)\}$
 $= \max\{\delta(w, C), \beta\delta(C)\} \le t\delta(C)$

where $t = \max\{\alpha, \beta\}$. Let $E = \{x \in K : \delta(x, C) \le t\delta(C)\}$ and $D = E \cap C$. Then $w \in D \ne \phi$. It is easily seen that E is closed and convex. Hence D is weakly closed.

Let $x \in D$. Then for any $y \in C$ we have by (1)

$$||Tw - Ty|| \le \max\{||x - y||, \min\{||x - Ty||, ||y - Tx||\}, \beta\delta(C)\}$$

 $\le \max\{t\delta(C), \min\{t\delta(C), ||y - Tx||\}, \beta\delta(C)\} = t\delta(C).$

Hence $TC \subset V = \{z \in K : \|z - Tx\| \le t\delta(C)\}$. Clearly $C \cap V \supset TC \ne \phi$. Let $y \in C \cap V$. Then $Ty \in C$ and $\|Ty - Tx\| \le t\delta(C)$; i.e., $Ty \in V$. Consequently $C \cap V$ is T- invariant. Since C is a T-regular set and V is a convex set, $C \cap V$ is a T-regular set. Note that V is closed and convex. Then $C \cap V$ is weakly closed. The minimality of C yields $C = C \cap V$. This implies $C \subset V$. Therefore for any $y \in C \subset V$, $\|Tx - Ty\| \le t\delta(C)$. Consequently $\delta(Tx, C) \le t\delta(C)$; i.e., $Tx \in E$. Hence $Tx \in E \cap C = D$, which implies $TD \subset D$. By the convexity of E and the E-regularity of E, E is a E-regular set. By the minimality of E, E-regularity of E-regular set. By the minimality of E-regularity of

$$\delta(C) = \sup_{x,y \in C} \|x - y\| \le \sup_{x \in C} \delta(x,C) \le \sup_{x \in E} \delta(x,C) \le t\delta(C) < \delta(C)$$

which is impossible. Hence Tx = x for all $x \in C$. Consequently $F_T \supset C \neq \phi$. This completes the proof.

Our main result is as follows:

THEOREM 1. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X and $T: K \to K$ be a family of commuting maps satisfying

$$||Tx - Ty|| \le \max\{||x - y||, \min\{||x - Ty||, ||y - Tx||\}$$

for $T \in \mathcal{T}$ and $x, y \in K$. Then $F_{\mathcal{T}}$ is nonempty closed convex and, in particular, weakly compact.

Proof. Clearly $F_T = \bigcap_{T \in T} F_T$. Let $T \in T$. It follows from Lemma 3 that $F_T \neq \phi$. Let $\{x_n\} \subset F_T$ and $x_n \to x$ as $n \to \infty$. Using (2),

$$||x - Tx|| \le ||x_n - x|| + ||Tx_n - T_x||$$

$$\le ||x_n - x|| + \max\{||x_n - x||, \min\{||x_n - Tx||, ||x - x_n||\}\}$$

$$= 2||x_n - x||.$$

It is easy to prove that $x = Tx \in F_T$. Hence F_T is closed. Let x_1 , $x_2 = \in F_T$ and $x = \frac{1}{2}(x_1 + x_2)$. Then

$$||x_i - Tx|| \le \max\{||x_i - x||, \min\{||x_i - Tx||, ||x_i - x||\}\} = \frac{1}{2}||x_1 - x_2||.$$

Conesequently

$$||x - Tx|| \le \frac{1}{2}(||x_1 - Tx|| + ||x_2 - Tx||) \le \frac{1}{2}||x_1 - x_2||$$

and

$$||x_1 - x_2|| \le ||x_1 - Tx|| + ||Tx - x_2|| \le ||x_1 - x_2||.$$

In view of strict convexity of the norm, $x_i - Tx$ and hence, Tx must lie on the segment joining x_1 and x_2 . The inequalities $||x_i - Tx|| \le \frac{1}{2} ||x_1 - x_2||$ implies that fx is the midpoint. Therefore x = Tx and F_T is convex. It follows that F_T is closed convex. As closed convex subset of the weakly compact set K, F_T is weakly compact. In order to show that $F_T \neq \phi$ it suffices to show that $\{F_T : T \in T\}$ has the finite intersection property.

We make the inductive assumption that each n members of \mathcal{T} have a common fixed point in K. Let $T_1, T_2, \dots, T_{n+1} \in \mathcal{T}$. Then $\bigcap_{i=1}^n F_{T_i}$ is nonempty weakly compact. It follows from the commutatively of \mathcal{T} that $T_{n+1} \cap_{i=1}^n F_{T_i} \subset \bigcap_{i=1}^n F_{T_i}$. By Lemma 1, T_{n+1} has a fixed point $y \in K$. The strict convexity of the norm together with the weak compactness of

 $\bigcap_{i=1}^n F_{T_i}$ enable us to find a unique point $x \in \bigcap_{i=1}^n F_{T_i}$ nearest to y. By (2) we get

$$||T_{n+1}x - T_{n+1}y|| \le \max\{||x - y||, \min\{||x - y||, ||y - T_{n+1}x||\}\} = ||x - y||.$$

Note that $T_{n+1}x \in \bigcap_{i=1}^n F_{T_i}$. Hence $||T_{n+1}x - y|| = ||x - y||$. Consequently $x = T_{n+1}x \in \bigcap_{i=1}^n F_{T_i}$; i.e., $\bigcap_{i=1}^{n+1} F_{T_i} \neq \phi$. This completes the proof.

Now we give some consequences of Theorem 1.

COROLLARY 1. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X and T be a commutative family of nonexpansive maps of K into itself. Then F_T is nonempty closed convex.

COROLLARY 2. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space $X, T : K \to K$ satisfy (2) for $x, y \in K$. Then F_T is nonempty closed convex.

Corollary 1 extends Corollary 1.2 of Veeramani [2]. The following example shows that Corollary 2 is a proper generalization of Veeramani's Corollary 1.2 and Browder's theorem.

EXAMPLE 1. Let $X = \mathbb{R}$ with the usual norm and K = [0, 1]. Define a map $T: K \to K$ by

$$Tx = \begin{cases} \frac{x}{3} & \text{if } x \in [0,1] \text{ and } X \text{ is rational} \\ 0 & \text{if } x \in [0,1] \text{ and } X \text{ is irrational} \end{cases}$$

Then all the conditions of Corollary 2 are satisfied. But Veeramani's Corollary 1.2 and Browder's theorem are not applicable since T does not satisfy $||Tx - Ty|| \le ||x - y||$ for x = 1 and $y = \frac{\sqrt{2}}{2}$.

THEOREM 2. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X and $T: K \to K$ be a family of commuting maps satisfying (2) for $T \in T$ and $x, y \in K$. Suppose that $h: X \to \mathbb{R}$ satisfies

- (i) h is lower semicontinuous convex function;
- (ii) $hTx \leq hx$ for $T \in \mathcal{T}$ and $x \in K$.

Then there exists $x_0 \in K$ such that $hx_0 = \inf\{hx : x \in K\}$ and $Tx_0 = x_0$ for all $T \in \mathcal{T}$.

Proof. Let $A = \{x \in K : hx = \inf_{y \in K} hy\}$. As in the proof of Theorem 2.1 [2], we conclude that $A = \{x \in X : hx \leq \inf_{y \in K} hy\} \cap K \neq \emptyset$ and A is

weakly compact. It follows from (ii) that $TA \subset A$ for each $T \in \mathcal{T}$. Let $x \in A$ and $T \in \mathcal{T}$. By (i) we have

$$h(\frac{x+Tx}{2}) \le \frac{hx}{2} + \frac{hTx}{2} \le hx = \inf_{y \in K} hy$$

which implies $h(\frac{x+Tx}{2}) = \inf_{y \in K} hy$. Consequently $\frac{x+Tx}{2} \in A$ and A is T-regular. By Theorem 1 there exists $x_0 \in A$ such that $Tx_0 = x_0$ for each $T \in \mathcal{T}$. This completes the proof.

COROLLARY 3. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X and $T: K \to K$ be a family of commuting maps satisfying (2) for $T \in T$ and $x, y \in K$. Suppose $y_0 \in X \setminus K$ and $||Tx - y_0|| \le ||x - y_0||$ for $T \in T$ and $x \in K$. Then T has a common fixed point $x_0 \in K$ which is a best approximation to y_0 from K.

Proof. Define a function $h: X \to \mathbb{R}$ by $hx = ||x - y_0||$. Then h is a continuous convex function. For $x \in K$ and $T \in \mathcal{T}$, we have

$$hTx = ||Tx - y_0|| \le ||x - y_0|| = hx.$$

Hence by Theorem 2 there exists $x_0 \in K$ such that $x_0 = Tx_0$ for all $T \in \mathcal{T}$ and

$$||x_0-y_0||=hx_0=\inf_{x\in K}||x-y_0||.$$

This completes the proof.

The following example reveals that Theorem 2 and Corollary 3 extend properly Theorem 2.1 and Corollary 2.2 of Veeramani.

EXAMPLE 2. Let X, K and T be as in Example 1. Let $y_0 = -1$, $T = \{T\}$. Define $h: X \to \mathbb{R}$ by $hx = ||x - y_0||$. Then the assumptions of Theorem 2 and Corollary 3 are satisfied but Theorem 2.1 and Corollary 2.2 of Veeramani are not applicable since T is not nonexpansive.

References

- 1. F. E. Browder, Nonexpansive nonlinear operations in Bansch space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1043.
- 2. P. Veeramani, On some fixed point theorems on uniformaly convex Banach spaces, J. Math Anal. Appl. 167 (1992), 160-166.