• Title/Summary/Keyword: Uniaxial Tensile Test

Search Result 230, Processing Time 0.029 seconds

A Study on Evaluation of Rock Brittleness Index using Punch Penetration Test (압입시험을 이용한 암석의 취성도 평가에 관한 연구)

  • Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The brittleness of rocks plays an important role in determining the fragmentation and failure behavior of rock. However, there is still no standard method to evaluate the brittleness of rock, and previous studies have suggested the several definitions for estimation of brittleness of rock. Even in the process of mechanical rock excavation and drilling, the brittleness of rock is considered as an important property for evaluating the excavation efficiency of mechanical excavators or boreability of rock. The previous studies have been carried out to investigate the correlation between different brittleness of rock and cutting efficiency and boreability of rock. This study introduced a method for calculating the brittleness of rock from punch penetration test, and analyzed the correlation between the brittleness of rock calculated by the uniaxial compressive and Brazilian tensile strengths and that from punch penetration test. From the results of correlation analysis, the relationship between various brittleness was confirmed, and it was found that PSI and BI3 showed a good correlation with the strength-based brittleness index. In addition, the results indicated that B3 and B4 are suitable to represent the brittleness of rock in the field of mechanical rock excavation.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Development of Computational Evaluation Method for Fatigue Crack Growth Rate based on Viscoplastic-Damage Model (점소성-손상모델 기반 피로균열 진전속도 전산 평가법 개발)

  • Kim, Seul-Kee;Kim, Jeong-Hyeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, computational evaluation method for fatigue crack growth rate(FCGR) based on material viscoplastic-damage model is proposed. Viscoplastic-damage model expressing material constitutive behavior of 7% nickel steel is introduced and is implemented into commercial finite element analysis(FEA) code, ABAQUS, as a user defined material subroutine(UMAT) for application in the FEA environments. Verification of developed UMAT and material parameters of material model are carried out by uniaxial tensile test simulations of 7% nickel steel. Moreover, jump-in-cycles procedure and rearrangement of critical damage are employed and also implemented to the ABAQUS UMAT for fatigue damage analysis. Typical FCGR test results such as relationship between crack length and number of cycles and relationship between da/dN and ${\Delta}K$ could be obtained from FCGR test simulation using developed UMAT and these results are compared with experimental results in order to verify of proposed computational method.

Effects of Film Stack Structure and Peeling Rate on the Peel Strength of Screen-printed Ag/Polyimide (박막 적층 구조 및 필링 속도가 스크린 프린팅 Ag/Polyimide 사이의 필 강도에 미치는 영향)

  • Lee, Hyeonchul;Bae, Byeong-Hyun;Son, Kirak;Kim, Gahui;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.59-64
    • /
    • 2022
  • Effects of film stack structure and peeling rate on the peel strength of screen-printed (SP) Ag/polyimide (PI) systems were investigated by a 90° peel test. When PI film was peeled at PI/SP-Ag and PI/SP-Ag/electroplated (EP) Cu structures, the peel strength was nearly constant regardless of the peeling rate. When EP Cu was peeled at EP Cu/SP-Ag/PI structure, the peel strength continuously increased as peeling rate increased. Considering uniaxial tensile test results of EP Cu/SP-Ag film with respect to loading rate, the increase of 90° plastic bending energy and peel strength was attributed to increased flow stress and toughness. On the other hand, viscoelastic PI film showed little variation of flow stress and toughness with respect to loading rate, which was assumed to result in nearly constant 90° plastic bending energy and peel strength.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

The Relationship between Rock Strength Characteristics and Net Penetration Rate of RBM by Pilot Test (시험시공을 통한 암석의 강도특성과 RBM의 순관입률과의 관계)

  • 이석원;조만섭;배규진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2003
  • For the purpose of research study, a vertical shaft of 98m in length and 3.05m in diameter was constructed in the layer of conglomerate by using the Raise Boring Machine (RBM). In order to estimate the net penetration rate of the RBM, which can be used in the stage of design, the in-situ test results were analysed and correlated to data from the boring log in situ and laboratory testing. Its average net penetration rate is 2.233mm/rev while its average advance rate is 0.382m/hr, which is lower than that of TBM(Tunnel Boving Machine). It turns out that the net penetration rate increases with the increase of strength characteristics in rock mass (e.g., uniaxial compression strength, tensile strength, etc.). Similarly, the net penetration rate increases linearly with the hardness of rock mass. These results are contrary to the results of the previous construction sites where the TBM was generally used in the layer of hard rock. However, the trend obtained in this study is in accordance with the findings of Barton suggesting the relationship between Q$_TBM$ and penetration rate in the layer of soft rock. Thus, the trend is valid in soft and/or weathered rocks.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials (계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술)

  • Lee, Kyung-Woo;Choi, Min-Jae;Kim, Ju-Young;Kim, Kwang-Ho;Kwon, Dong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.306-314
    • /
    • 2006
  • Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.

Biaxial Strain Analysis of Various Fixation Models in Porcine Aortic and Pulmonary Valves (돼지 대동맥 판막과 폐동맥 판막의 고정 방법에 따른 양방향 압력-신장도의 비교분석)

  • Cho, Sung-Kyu;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.566-575
    • /
    • 2009
  • Background: The function of a bioprosthetic heart valve is determined largely by the material properties of the valve cusps. The uniaxial tensile test has been studied extensively. This type of testing, however, does not replicate the natural biaxial loading condition. The objective of the present study was to investigate the regional variability of the biaxial strain versus pressure relationship based on the types of fixation liquid models. Material and Method: Porcine aortic valves and pulmonary valves were assigned to three groups: the untreated fresh group, the fixed with glutaraldehyde (GA) group, and the glutaraldehyde with solvent (e.g., ethanol) group. For each group we measured the radial and circumferential stretch characteristics of the valve as a function of pressure change. Result: Radial direction elasticity of porcine aortic and pulmonary valves were better than circumferential direction elasticity in fresh, GA fixed and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of pulmonary valves were better than aortic valves in GA fixed, and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of aortic valves were decreased after GA and GA+solvent fixation(p=0.00), except for circumferential elasticity of GA+solvent fixed valves (p=0.785). The radial (p=0.137) and circumferential (p=0.785) direction of elasticity of aortic valves were not significantly different between GA fixed. and GA+solvent fixed groups. Radial (p=0.910) and circumferential (p=0.718) direction of elasticity of pulmonary valve also showed no significant difference between GA fixed and GA+solvent fixed groups. Conclusion: When fixing porcine valves with GA, adding a solvent does not cause a loss of mechanical properties, but, does not improve elasticity either. Radial direction elasticity of porcine aortic and pulmonary valves was better than circumferential direction elasticity.