DOI QR코드

DOI QR Code

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash

폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법

  • Received : 2013.03.22
  • Accepted : 2013.04.08
  • Published : 2013.05.30

Abstract

The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

폴리비닐알코올 섬유와 폴리에틸렌 섬유 등의 합성 섬유는 고연성 섬유보강 시멘트 복합재료를 제조하는데 성공적으로 사용되고 있다. 폴리프로필렌 섬유 역시 복합재료를 제조하는데 사용되고 있지만, 고연성을 구현하는 목적보다는 고온에 노출된 콘크리트의 내화 성능 향상 목적으로 사용되고 있다. 이 연구에서는 폴리프로필렌 섬유로 보강된 시멘트 복합재료의 성능을 향상시키는 방법에 대하여 논하고자 한다. 폴리프로필렌 섬유보강 시멘트 복합재료의 성능을 평가하기 위하여 5가지 배합을 결정하였다. 1종 보통포틀랜드시멘트 (OPC)와 OPC를 다량 치환한 플라이애시를 결합재로 사용하였고 물-결합재 비는 0.23~0.25이다. 또한 부피비로 2%의 폴리프로필렌 섬유가 사용되었으며, 연성을 향상시킬 목적으로 폴리스틸렌 비드가 사용되었다. 슬럼프, 밀도, 압축강도, 1축 인장 실험을 포함한 일련의 실험을 수행하였으며, 실험결과, 파괴역학, 마이크로역학, 통계이론을 이용하여 폴리프로필렌 섬유보강 시멘트 복합재료의 성능을 향상할 수 있는 것으로 나타났다.

Keywords

References

  1. Bentz, D. P., "Fibers, Percolation, and Spalling of High Performance Concrete", ACI Materials Journal, vol. 97, No. 3, 2000, pp.351-359.
  2. Cho, C. G., Lim, H. J., Yang, K. H., Song, J. K., Lee, B. Y., "Basic Mixing and Mechanical Tests on High Ductile Fiber Reinforced Cementless Composites", Journal of the Korea Concrete Institute, vol. 24, No. 2, 2012, pp.121-127. (in Korean) https://doi.org/10.4334/JKCI.2012.24.2.121
  3. Ha, G. J., Lee, D. Y., "Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag", Journal of the Korea institute for Structural Maintenance Inspection, vol. 14, No. 6, 2010, pp.142-152. (in Korean)
  4. Han, C. G., Kim, S. S., Kim, S. S., Bea, J. C., "Spalling Prevention of High Strength Concrete Due to Hybrid Organic Fiber and Different Lengths of Polypropylene Fibers", Journal of the Architectural Institute of Korea, vol. 24, No. 2, 2008, pp.61-68. (in Korean)
  5. Kim, D. J., "Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers", Journal of the Korea Concrete Institute, vol. 22, No. 4, 2010, pp.577-585. (in Korean) https://doi.org/10.4334/JKCI.2010.22.4.575
  6. Kim, Y. Y., Fischer, G. and Li, V. C., "Performance of Bridge Deck Link Slabs Designed with Ductile Engineered Cementitious Composite (ECC)", ACI Structural Journal, vol. 101, No. 6, Nov.-Dec., 2004, pp.792-801.
  7. Kim, Y. Y., "Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers", Journal of the Korea Society for Composite Materials, vol. 21, No. 2, 2007, pp.21-26. (in Korean)
  8. Lee, B. Y., "Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application", Journal of the Korea Institute for Structural Maintenance and Inspection, vol. 16, No. 1, 2012, pp.55-63. (in Korean) https://doi.org/10.11112/jksmi.2012.16.1.055
  9. Lee, B. Y., Han, B. C., Cho, C. G., Kwon, Y. J., Kim, Y. Y., "Fiber Distribution Characteristics and Flexural Performance of Extruded ECC Panel", Journal of the Korea Concrete Institute, vol. 21, No. 5, 2009, pp.573-580. (in Korean) https://doi.org/10.4334/JKCI.2009.21.5.573
  10. Leung, C. K. Y., "Design criteria for pseudo ductile fiberreinforced composites", Journal of Engineering Mechanics, vol. 122, No. 1, 1996, pp.10-14. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(10)
  11. Li, V. C. and Leung, K. Y., "Steady-state and multiple cracking of short random fiber composites", Journal of Engineering Mechanics, vol. 118, No. 11, 1992, pp.2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  12. Li, V. C., "Engineered Cementitious Composites - Tailored Composites through Micromechanical Modeling", in Fiber Reinforced Concrete: Present and the Future, edited by N. Banthia, A. Bentur, A. and A. Mufti, Canadian Society for Civil Engineering, Montreal, 1998, pp.64-97.
  13. Lin, Z., Kanda, T., Li, V. C., "On interface property characterization and performance of fiber reinforced cementitious composites", Concrete Science and Engineering (RILEM)., vol. 1, No. 3, 1999, pp.173-184.
  14. Marshall, D. B. and Cox, B. N., "A J-integral method for calculating steady-state matrix cracking stressed in composites", Mechanics of Materials, vol. 7, No. 2, 1988, pp.127-133. https://doi.org/10.1016/0167-6636(88)90011-7
  15. Wang, S. and Li, V. C., "Polyvinyl Alcohol Fiber Reinforced Engineered Cementitious 8 Composites: Material Design and Performances", Proceedings of International RILEM 9 Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural 10 Applications, Published by RILEM SARL, 2006, pp.65-73.
  16. Wang, Y., Backer, S. and Li, V. C., "A Statistical Tensile Model of Fiber Reinforced Cementitious Composites", Journal of Composites, vol. 20, No. 3, 1990, pp.265-274.
  17. Won, J. P., Jang, C. I., Kim, H. Y., Kim, W. Y., "Spalling and Internal Temperature Distribution of High Strength Column Member with Polypropylene Fiber Volume Fractions", Journal of the Korea Concrete Institute, vol. 20, No. 6, 2008, pp.821-826. (in Korean) https://doi.org/10.4334/JKCI.2008.20.6.821
  18. Zeiml, M., Leithner, D., Lackner, R. and Mang, H. A., "How Do Polypropylene Fibers Improve The Spalling Behavior of In-Situ Concrete?", Cement and Concrete Research, vol. 36, No. 5, 2006, pp.929-942. https://doi.org/10.1016/j.cemconres.2005.12.018

Cited by

  1. Compressive and Tensile Behavior of Polyetylene Fiber Reinforced Composite According to Silica Sand and Fly Ash vol.4, pp.1, 2016, https://doi.org/10.14190/JRCR.2016.4.1.025
  2. Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers vol.19, pp.4, 2015, https://doi.org/10.11112/jksmi.2015.19.4.049
  3. Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals vol.8, pp.4, 2019, https://doi.org/10.12989/acc.2019.8.4.311