• Title/Summary/Keyword: Unequal Power Divider

Search Result 30, Processing Time 0.026 seconds

Unequal Multi-Section Power Divider using CPW and Offset Coupled Transmission Lines (CPW와 Offset 결합 전송선로를 이용한 비대칭 다단 분배기)

  • Choi, Jong-Un;Yoon, Young-Chul;Sung, Gyu-Je;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.309-315
    • /
    • 2019
  • This paper proposes an implementation of unequal power divider with 1:3 and 1:4 splitting ratio in multi-section structure using CPW and offset coupled transmission line. The power divider consists of a multi-section transmission line and a circuit with parallel capacitors and resistors. A multi-section transmission line was implemented by decomposing a ${\lambda}/4$ single transmission line terminated by an arbitrary impedance and converging it with a multi-section transmission line shorter than $90^{\circ}$ electrical length, and RC parallel circuits were connected between transmission lines to obtain reflection coefficient of output port and isolation characteristics between the output port. In this way, it was confirmed that the transmission lines at the unequal power divider designed at 2 GHz were shorter than ${\lambda}/4$ and implemented at least 27% less than the conventional ones, and that the broadband characteristics could be obtained.

Unequal Dual-band Wilkinson Power Divider (비대칭 이중대역 전력분배기)

  • Kim, Byung-Chul;Lee, Soo-Jung;Kim, Young
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • This paper suggested a theoretical approach and an implementation for the design of an unequal Wilkinson power divider with a high dividing ratio operating at two-frequencies. The T-section transmission lines and the two-section of Monzon's theory are proposed to operate a dual-band application. To achieve the high dividing ratio divider, the high impedance line using a T-shaped structure and low impedance lines with periodic shunt open stubs are implemented. For the validation of this divider, a dual-band power divider with a high dividing ratio of 5 is simulated and measured at 1 GHz and 2 GHz. The measured performances of the divider are in good agreements with simulation results.

Design of Microwave Unequal Power Dividers Using Defected Ground Structure (결함접지구조를 이용한 초고주파 비대칭 전력 분배기 설계)

  • Lim, Jong-Sik;Koo, Jae-Jin;Oh, Seong-Min;Ahn, Dal;Choi, Kwan-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1099-1104
    • /
    • 2007
  • A 1:6 Unequal 2-way Wilkinson power divider is proposed. The required microstrip line with $207{\Omega}$ characteristic impedance for 1:6 power divider is realized by adding defected ground structure (DGS) to the standard microstrip line. The adopted DGS has the rectangular geometry which results in the increased characteristic impedance. The rectangular-shaped DGS produces the transmission line having much higher characteristic impedance due to the increased equivalent inductance. The measured performances of the fabricated 1:6 power divider show the expected S-parameters with a good agreement with the predicted ones.

Modified Wilkinson Power Divider Using Transmission Lines for Various Terminated Impedances and an Arbitrary Power Ratio

  • Yoon, Young-Chul;Kim, Young
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • This paper introduces a modified Wilkinson power divider that uses uniform transmission lines for various terminated impedances and an arbitrary power ratio. For the designed power ratio, the proposed divider changes only the electrical lengths of the transmission lines between the input and output ports, and those between the output ports and the isolation resistor. In this case, even when various termination impedances of the ports exist, the divider characteristics are satisfied. To verify the feasibility of the proposed divider, two circuits were designed to operate at a frequency of 2 GHz with 2:1 and 4:1 power splitting ratios and various terminated impedances of 40, 70, and $60{\Omega}$ for one circuit, and 50, 70, and $60{\Omega}$ for the other. The measurement and simulation results were in good agreement.

Dual-Band Unequal Power-Divider Miniaturized by Metamaterial CRLH Phase-Shift Lines (메타 재질 구조 CRLH 전송선 기반 소형 이중 대역 비균등 전력분배기)

  • Eom, Da-Jeong;Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1048-1057
    • /
    • 2012
  • In this paper, a new compact dual-band unequal power divider is suggested. Instead of the quarter wavelength transmission line(TX-line)s for the branches of the conventional Wilkinson's power divider, we use composite right- and left-handed(CRLH) phase-shift lines and can reduce the physical length. With the non-linear dispersion of the meta-meterial, each branch in the proposed divider is designed to have $+90^{\circ}$ and $-90^{\circ}$ at $f_1$ and $f_2$ respectively. To validate the proposed method, the performances of the circuit and full-wave simulation results are shown with the CRLH dispersion curve. The measurement results are compared with the simulation results. Also, the size reduction effect by the proposed scheme is addressed.

Unequal Power Divider based on Adjustment Electrical Length of Uniform Transmission Line (단일 전송선로의 전기적 길이 조정을 이용한 비대칭 분배기)

  • Kwon, Sang-Keun;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.642-647
    • /
    • 2018
  • In this paper, an unequal power divider based on adjusting electrical length of uniform transmission line is presented. This divider consists of three uniform transmission lines and one isolation resistor and have the different port impedances of input and output. The feature of proposed divider can changed the power dividing ratio to adjust only electrical length of uniform transmission lines. To verify the feasibility of proposed power divider, two divider circuits are designed, one is 1:2 power dividing ratio divider with $60{\Omega}$ uniform transmission line and $40{\Omega}$ input port impedances and $45{\Omega}$ output port impedances, the performance data were measured the insertion losses of 1.7 dB/ 5.0 dB, return losses of more than -30 dB and isolation of more than -35 dB. The other is 1:4 power dividing ratio divider with $40{\Omega}$ uniform transmission line and $50{\Omega}$ input port impedances and $75{\Omega}$ output port impedances, the performance data were measured the insertion losses of 1.3 dB/ 6.8 dB, return losses of more than -12 dB and isolation of more than -19 dB. The measured performance data agreed well with the simulated results.

4-Way Power Divider Based on Substrate Integrated Waveguide for Satellite Communications (기판 집적 도파관 기술을 이용한 위성 통신용 4분기 전력 분배기)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Lee, Taek-Kyung;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.721-728
    • /
    • 2009
  • Equal/unequal 4-way power divider suitable for satellite communication using SIW technology is presented in this paper. The control of positions of guiding posts provides equal or unequal power division ratios by maintaining the width of the SIW unchanged. In addition, the detailed descriptions for the proposed power divider include the general characteristics of radial waveguide, feeding part using coaxial cable, simple SIW structure, power-guiding posts, and transition for measurement. The comparison between the simulated and measured data shows a good agreement at a center frequency of 10 GHz. The measured input impedance bandwidths for equal and unequal power divisions are about 2.1 GHz and 3 GHz under the condition of less than VSWR 2:1, respectively.

A Study on the Radiation Characteristics of Linear phased array antenna using current divider. (전류 분배기를 이용한 선형위상배열 안테나에 관한 연구)

  • 이창식;유재문;이종악
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.419-427
    • /
    • 2000
  • The 4 by 4 microstrip phased array antenna designed and radiation characteristics are studied. The design frequency was chosen to be 5.8GHz. Chebyshev ratio was achieved by unequal power divider and Wilkinson power divider. The ratio of current at each port is 1 : 2.6 : 2.6 : 1 and then side lobe level is less than -30 dB. It is shown that the radiation beam direction can be changed up to 30。 by control the phase at each port. The result can be used to design electrically controllable microwave scanning antennas.

  • PDF

Design of a Metamaterial-Based Compact Dual-Band 3-way Power Divider for Lighter L-band Military Satellite Transceivers (L대역 군위성 중계기 경량화를 위한 메타재질기반 소형 이중대역 3분기 전력분배기의 설계)

  • Kahng, Kyung-Seok;Yang, Inkyu;Jang, Kyeong-Nam;Lee, Hosub;Lee, Hyoung-Jong;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1712-1718
    • /
    • 2013
  • This paper proposes a compact dual-band 3-way power divider that helps lowering the weight of a transceiver for the L-band or multi-purpose satellite communication. Instead of the multi stages or tapering which ends up with loss accumulation and size-growth, the non-linear dispersive phases from the metamaterial CRLH(composite right and left-handed) properties are obtained by the accurate formulation and implemented by the short transmission line segments. Firstly, the CRLH dual-band two-way unequal power divider and equal power divider are separately designed. And then, the input of the two-way equal power divider is plugged in the output port of the unequal one, and the entire geometry is slightly adjusted for the desirable performance. The circuit analysis and full-wave simulation are used to predict the frequency responses and validated by the measurement of the prototype. Besides, the size-reduction effect is addressed.

Power Dividers for High Splitting Ratios using Transmission Line Connected with Open and Short Stubs (단선과 단락 스터브가 연결된 전송선로를 이용한 높은 분배비율을 갖는 전력 분배기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.229-235
    • /
    • 2021
  • This paper proposes a method of implementing an unequal power divider for high splitting ratios by using transmission lines connected with open and short stubs. The proposed method is an equivalent circuit analysis of a transmission line with an additional port so that it can be converted to an arbitrary impedance in the center of a 2-port transmission line and a 3-port transmission line with an open or short stub connected in parallel to each port. To prove the validity of this method, a Wilkinson power divider with k2 = 20 dB splitting ratio and a Gysel power divider with k2 = 17 dB splitting ratio were designed at a center frequency of 1 GHz using a 3-port transmission line equivalent circuit. The experimental results of the electrical characteristics are in good agreement with the simulation.