• Title/Summary/Keyword: Underwater information

Search Result 678, Processing Time 0.025 seconds

Localization of AUV Using Visual Shape Information of Underwater Structures (수중 구조물 형상의 영상 정보를 이용한 수중로봇 위치인식 기법)

  • Jung, Jongdae;Choi, Suyoung;Choi, Hyun-Taek;Myung, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.392-397
    • /
    • 2015
  • An autonomous underwater vehicle (AUV) can perform flexible operations even in complex underwater environments because of its autonomy. Localization is one of the key components of this autonomous navigation. Because the inertial navigation system of an AUV suffers from drift, observing fixed objects in an inertial reference system can enhance the localization performance. In this paper, we propose a method of AUV localization using visual measurements of underwater structures. A camera measurement model that emulates the camera’s observations of underwater structures is designed in a particle filtering framework. Then, the particle weight is updated based on the extracted visual information of the underwater structures. The proposed method is validated based on the results of experiments performed in a structured basin environment.

Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication

  • Waleed, Raza;Xuefei, Ma;Houbing, Song;Amir, Ali;Habib, Zubairi;Kamal, Acharya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.239-260
    • /
    • 2023
  • The underwater acoustic wireless communication networks are generally formed by the different autonomous underwater acoustic vehicles, and transceivers interconnected to the bottom of the ocean with battery deployed modems. Orthogonal frequency division multiplexing (OFDM) has become the most popular modulation technique in underwater acoustic communication due to its high data transmission and robustness over other symmetrical modulation techniques. To maintain the operability of underwater acoustic communication networks, the power consumption of battery-operated transceivers becomes a vital necessity to be minimized. The OFDM technology has a major lack of peak to average power ratio (PAPR) which results in the consumption of more power, creating non-linear distortion and increasing the bit error rate (BER). To overcome this situation, we have contributed our symmetry research into three dimensions. Firstly, we propose a machine learning-based underwater acoustic communication system through long short-term memory neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes the system reliable and efficient, which turns into a better performance of BER. Finally, the simulation and water tank experimental data results are executed which proves that the LSTM-NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in the overall communication system.

Transmission Performance of Application Traffic on Underwater MANETs (수중 MANET에서 응용 트래픽의 전송 성능)

  • Kim, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.557-560
    • /
    • 2013
  • MANTET(Mobile Ad-Hoc Networks), which is configured and operated by each terminals with no support of communication infra-structures, is recently expanded its application fields from terrestrial communications to underwater environments with technical advances of Wi/Fi and minimized portable terminals. Underwater sensor network, undersea environment explorations and probes, information transmission for underwater area, etc., is typical application fields of underwater MANET. Especially, Performance measurement and analysis on this application fields is one of important research area and base of design, implementation and operation for underwater MANET. However, the research results are focued on various transmission parameters on network level, and its objects of analysis are also performance of network level. In this paper, transmission performances for application levels are measured and analyzed for user levels on underwater MANET. In this study, voice traffic is assumed as object application traffic, computer simulation which is based on NS-2 having additional implemented functions for underwater communications is used. on some defined scale of MANET, transmission performances according to varying traffic environments are measured and analyzed, operation conditions on underwater MANET is suggested with the analysis.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

An Implementation of Acoustic-based MAC Protocol Multichannel Underwater Communication Network

  • Lim, Yong-Kon;Park, Jong-Won;Kim, Chun-Suk;Lee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.105-111
    • /
    • 1997
  • This Paper Proposes a new efficient system design strategies for the acoustic-based underwater multiple modem and media access control protocol. The system aims to establish the acoustic-based communication network of an underwater vehicles for deep sea mining, which ensures a certain level of maximum throughput regardless of the propagation delay of acoustic and allows fast data transmission through the acoustic-based multiple channel. A media access control protocol for integrated communication network and it's acoustic-based communication modems that allows 'peer-to-peer' communication between a surface mining plant multiple underwater system is designed, and the proposed media access control protocol is implemented for its verification. Furthermore, a proposed design strategies which make it possible to control the multiple vehicle for an underwater mining is presented in this paper.

  • PDF

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

Design of Internet of Underwater Things Architecture and Protocol Stacks

  • Muppalla, Kalyani;Yun, Nam-Yeol;Park, Soo-Hyun;Kim, Changhwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.486-488
    • /
    • 2013
  • In the earth more than half of the space filled with water. In that water most of the part is in the form of oceans. The ocean atmosphere determines climate on the land. Combining the Underwater Acoustic Sensor Network (UWASN) system with Internet Of Things (IoT) is called Internet of Underwater Things (IoUT). Using IoUT we can find the changes in the ocean environment. Underwater sensor nodes are used in UWASN. Underwater sensor nodes are constructive in offshore investigation, disaster anticipation, data gathering, assisted navigation, pollution checking and strategic inspection. By using IoT components such as Database, Server and Internet, ocean data can be broadcasted. This paper introduces IoUT architecture and and explains fish forming application scenario with this IoUT architecture.

Implementation of an Underwater ROV for Detecting Foreign Objects in Water

  • Lho, Tae-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • An underwater remotely operated vehicle (ROV) has been implemented. It can inspect foreign substances through a CCD camera while the ROV is running in water. The maximum thrust of the ROV's running thruster is 139.3 N, allowing the ROV to move forward and backward at a running speed of 1.03 m/s underwater. The structural strength of the guard frame was analyzed when the ROV collided with a wall while traveling at a speed of 1.03 m/s underwater, and found to be safe. The maximum running speed of the ROV is 1.08 m/s and the working speed is 0.2 m/s in a 5.8-m deep-water wave pool, which satisfies the target performance. As the ROV traveled underwater at a speed of 0.2 m/s, the inspection camera was able to read characters that were 3 mm in width at a depth of 1.5 m, which meant it could sufficiently identify foreign objects in the water.

Underwater Packet Flow Control for Underwater Networks (수중네트워크를 위한 수중패킷 흐름제어기법)

  • Shin, Soo Young;Park, Soo Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.924-931
    • /
    • 2016
  • In this paper, Various network adaptive MAC scheduling technique is proposed to effectively overcome limits of narrow bandwidth and low transmission speed in underwater. UPFC(Underwater Packet Flow Control) is a technique to reduce both the number of transmission and transmission time using three types (Normal, Blocked, Parallel) of data transmission. In this technique, the load information, in which a transmission node have, is transmitted to destination node using marginal bit in reserved header. Then the transmitted information is referred to determine weighting factor. According to the weighting factor, scheduling is dynamically changed adaptively. The performance of UPFC is analyzed and flow control technique which can be applied to Cluster Based Network and Ad Hoc network as well.

Underwater Acoustic Communication Research using Blind Channel identification (블라인드 채널추정기법(Blind Channel Identification)을 이용한 수중통신 연구)

  • Kim, Kap-Su;Cho, A-Ra;Choi, Young-Chol;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.165-169
    • /
    • 2007
  • Due to the complexity of underwater acoustic channel, signal estimation in underwater acoustic communication field is considerably affected from time-varying multipath fading channels. On this reason, the original signals should have many long training signals to estimate the channel and the purposed signals, and the bit rate of signals having information may have small rate. In order to avoid this loss of efficiency in underwater communication, this paper employed a blind channel identification method which don't use training signals. Simulations have predicted performance of the employed method in multipath environment and an aquatic plant experiment has verified the simulation results.

  • PDF