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Abstract 
 
The underwater acoustic wireless communication networks are generally formed by the 
different autonomous underwater acoustic vehicles, and transceivers interconnected to the 
bottom of the ocean with battery deployed modems. Orthogonal frequency division 
multiplexing (OFDM) has become the most popular modulation technique in underwater 
acoustic communication due to its high data transmission and robustness over other 
symmetrical modulation techniques.  To maintain the operability of underwater acoustic 
communication networks, the power consumption of battery-operated transceivers becomes a 
vital necessity to be minimized. The OFDM technology has a major lack of peak to average 
power ratio (PAPR) which results in the consumption of more power, creating non-linear 
distortion and increasing the bit error rate (BER). To overcome this situation, we have 
contributed our symmetry research into three dimensions. Firstly, we propose a machine 
learning-based underwater acoustic communication system through long short-term memory 
neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes 
the system reliable and efficient, which turns into a better performance of BER. Finally, the 
simulation and water tank experimental data results are executed which proves that the LSTM-
NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in 
the overall communication system. 



240                                         Raza et al.: Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio  
   Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication 

 
 
Keywords: underwater acoustic communication; orthogonal frequency divisional 
multiplexing; long short-time memory neural network; machine learning; PAPR 
 
 

1. Introduction 

The underwater acoustic communication networks (UACN) are formed for end-to-end 
communication for the exploration of the ocean and many other applications. For security and 
defense purposes, uncountable applications have been found, where UACN has played vital 
roles. Some applications of end-to-end communication related to non-military are 
oceanographic data collection, pollution monitoring, offshore exploration, natural disaster 
prevention, assisted navigation, and tactical surveillance, while also have many applications 
in military purposes communication, where secure, reliable, and fast responsive 
communication networks are preferred [1-3]. The operations of the navy are monitored based 
on highly responsive UACN during the war zone. 
Moreover, the commercial development of UACN increases as the need increases in many 
real-time applications such as pollution monitoring of streams, seismic imaging, lakes, ocean 
bays, drinking water reservoirs, local ponds, the biological behavior of different animals in 
different oceans, and can also be used where leakage of oil detection is required [4, 5]. 
Underwater acoustic communication (UAC) is considered as the key tool of UACN, so the 
sparse network topology and wireless communication are preferable for the exchange of 
massive information underwater, instead of deploying costly wired networks [6]. 
     Different symmetrical communication media have different behavior in underwater and 
can propagate up to a certain range.  The radio frequencies can propagate several meters, 
optical waves can propagate up to tens of meters, and on the other hand magnetically coupled 
communication has been introduced recently for short-range UAC communication in the 
literature [7, 8]. Looking at the behavior of all these communication media, the acoustic wave 
can propagate over a wide range i.e., up to 40 km with minimal loss. So, the acoustic wave is 
a better choice in underwater communication networks and is the key technology to realize the 
UACN. 
     The orthogonal frequency division multiplexing (OFDM) has achieved huge importance in 
the terrestrial wireless communication system, now it is being shifted towards UACN [9]. The 
communication networks in the underwater acoustic medium are different from terrestrial 
radio-based networks due to huge propagation delays, high transmit energy, low bandwidth, 
and various multipath effects [10, 11]. The propagation speed of the acoustic signal in the 
water depends on different factors, i.e., salinity, temperature, and pressure, which is about five 
orders less than radio signals in magnitude [3, 12]. 
For wireless communication in underwater acoustic medium, OFDM technology is 
implemented, keeping in mind about time-varying nature of the acoustic channel. When the 
communication is established, it faces multipath propagation and Doppler shift, which makes 
the communication system more challenging [6, 13, 14]. Even though looking at several 
advantages of OFDM i.e. high data rate and better bandwidth efficiency it also undergoes some 
drawbacks such as peak to average power ratio (PAPR) and carrier frequency offset [15, 16]. 
When high peaks resulting during communication are allowed to pass through the non-linear 
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region of the power amplifier (PA), then it will distort the communication system. The overall 
efficiency of the system is reduced, and complexity becomes very high for analog-to-digital 
converters (ADC) and digital-to-analog converters (DAC) [15, 17, 18]. Particularly, the energy 
efficiency (EE) is decreased which is due to high PAPR in battery-powered modems in the 
UACN. Also, the performance of the signal-to-quantization-noise ratio (SQNR) is affected. 

To overcome this situation, large power back-off, high-power amplifiers (HPA), and linear 
converters are required [19-21]. After approaching these requirements, the hardware becomes 
much more costly, and the system will be more complex. The cost is also the main factor in 
designing the hardware components. So the OFDM system must be less complex with a lower 
PAPR [22]. In this paper, the novel long short-term memory neural network (LSTM-NN) 
based OFDM system is proposed. The PAPR of an OFDM signal is mitigated using a modern 
machine learning (ML) algorithm named as LSTM-NN algorithm, which is the best-fit process 
for the mitigation of PAPR. The data is passed through a multipath fading UAC channel. Then, 
at the receiver side, the OFDM symbols are received by using 16-quadrature amplitude 
modulation (16-QAM) with successful decoding and efficient performance of bit error rate 
(BER). The simulation results show that the proposed LSTM-NN has better performance in 
terms of PAPR reduction compared with the traditional OFDM system. 

1.1  Literature Overview 
 The ML is an efficient tool to solve many complex problems like object tracking, recognition 
of voice, and detection of objects. Also, it has vast applications in computer vision and natural 
language processing. Artificial intelligence (AI) has led the basis in digital signal processing, 
and the subcategories of AI such as deep learning (DL) and ML will be the main part of the 
internet of things (IoT) and smart cities for the future generation of heterogeneous networks 
[25, 26]. In this article, we aim to implement ML and DL based methods in underwater 
acoustic OFDM communication. Therefore, this subsection is dedicated to a brief survey of 
AI-based literature and research. 
    In 2019, Zhang et al. introduced a deep learning-based UAC system [27]. In this work, the 
focus was mainly on designing the DL-based OFDM receiver. He trained the deep neural 
network (DNN) in labeled and unlabeled data, after using the acoustic propagation model and 
giving sound speed profiles to train the DNN based OFDM receiver. The ML based OFDM 
communication system was introduced in [28], which predicts and estimates impulsive noise. 
At the receiver, the ML classifiers were trained with different impulsive noise statistics which 
predict the discrete Fourier transforms (DFT) samples of the OFDM system, containing 
impulsive noise. Hao et al. estimated the channel using deep learning technology in [29], this 
method identifies the channel distortion using a DL model based on channel characteristics. 
The same work was presented in [30], this scheme was named a de-noising autoencoder for 
an OFDM communication system based on a neural network. The noise of the channel is 
reduced, and it estimates the channel transfer function by using the autoencoder of the ML. 
   Mingshan et al. proposed a neural network-assisted active constellation expansion method 
(NN-ACE) which is also based on an autoencoder for mitigating the PAPR [31]. An 
autoencoder learns the extension vector of ACE which keeps the signal power low. 
Furthermore, in the loss function, a technique was given to maintain the PAPR reduction and 
power increment by a weight factor. In [25] the authors presented research that was based on 
the autoencoder architecture of deep learning and the method was named PAPR reducing 
network (PRNet). In the proposed PRNet method, a deep learning network was employed 
which determines the constellation and demapping of each subcarrier adaptively. Also, it 
reduces both the PAPR and the BER jointly. The tone reservation based on deep learning (DL-
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TR) was proposed by Lanping et al. which is also operated for the reduction of PAPR in 
OFDM signals [32]. Besides this, several other PAPR reduction algorithms were proposed in 
the literature such as genetic algorithm (GA), particle swarm optimization (PSO) with 
selective mapping and partial transmit sequences at the cost of complexity [33-38]. After then 
several DL and ML based approaches were proposed in [39-42]. Whereas this article mainly 
focuses on implementing the LSTM-NN for the OFDM system and is proposed for the first 
time according to our best knowledge. In this model, the novel LSTM-NN assisted OFDM 
system is introduced. Secondly, the PAPR of an OFDM signal is reduced using a modern ML 
algorithm named LSTM-NN algorithm. Then the simulation is performed, considering real 
data transmission to obtain optimal performance of the overall system with lesser complexity 
and efficient performance of BER. 

2. System Model 
The underwater acoustic OFDM communication system comprises the single transducer and 
single receiver denoted as tN , rN respectively. The time duration of each OFDM block in the 
system is expressed as gT T T′ = + , in the expression, the OFDM symbol is shown asT , and 

the guard interval is given as gT . Here, 1/ T is subcarrier spacing[43]. At frequency kf , the 
thk  subcarrier is expressed as: 

                                   ,k c
kf f
T

= +                     ...., / 2 1
2
Kk K= −                                        (1) 

In equation (1) the carrier frequency is given as cf , and the number of subcarriers is expressed 
as K . Hence, the bandwidth is /B K T= . We suppose the encoded information symbols as  

[ ]uS k  also the pulse shape filter is shown as ( )g t . Finally, the signal which is transmitted by 

thu  the transducer is illustrated as: 
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We assume ( , )v u th , transducer and hydrophone pair, the multipath channel is comprised of 

,v uP  several discrete paths, then the impulse response of the channel is expressed as: 
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Here, the amplitude is given as , ,v u pA and , ,v u pτ  denotes the delay of thp  the path of ( , )v u th  
the transducer and hydrophone pair also including the Doppler scaling factor , ,v u pa . In 
equation 4, we have illustrated the OFDM system model in the UAC which is different from 
the terrestrial wireless OFDM communication system by giving the unique underwater 
acoustic channel, which has severe multipath effects and Doppler effects [44-46]. In the end, 
the passband signal at the thv  receiver after adding noise ( )vn t is given by 

                                       
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Fig. 1 explains the basic block diagram of the underwater acoustic OFDM system with the 
proposed LSTM-NN. In the OFDM systems, the input binary sequence is the first baseband 
modulated using binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 
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and quadrature amplitude modulation (QAM), then the data is interleaved and finally 
modulated utilizing OFDM which is to be transmitted through the channel. Further, it includes 
the addition of pilots, reduction of PAPR with the proposed LSTM-NN algorithm, inverse fast 
Fourier transform (IFFT), and cyclic prefix addition.  On the receiver side, channel estimation 
and equalization are performed, which is regarded as an intricate job. Finally, it is demodulated, 
de-interleaved, and decoded by employing LSTM-NN after the fast fourier transform and 
performing channel estimation and equalization. 

 
Fig. 1. The framework/system model of an underwater acoustic OFDM communication system with 

LSTM-NN 
 

2.1  Peak to Average Power Ratio 
The value of peak power is always larger than the average power in an OFDM signal because 
a large number of subcarriers are added coherently resulting in high PAPR [47, 48]. In the 
UAC system, PAPR has high significance over the transmitted signal because the power 
efficiency is affected by PAPR. Also, the PAPR directly affects the performance of the PA. 
When the value of PAPR is high, the peak signals are shifted towards the nonlinear region of 
the PA, hence power efficiency is decreased. The inter-symbol interference (ISI), as well as 
ICI, is due to nonlinearity among OFDM signals. A continuous time-domain signal in terms 
of PAPR can be given in the following equation, 

                                                    
2
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The time-domain signal can be given mathematically as: 
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                                                        (6) 

To check the performance of PAPR in OFDM transmitted signals the complementary 
commutative distribution function (CCDF) of PAPR is used which exhibits the performance 
of PAPR reduction schemes. It can be given for a specific level 0PAPR as, 
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                                             0( )PAPR rCCDF P PAPR PAPR= >                                          (7) 
For the Gaussian time-domain signal, it is illustrated as,  
                                               01 (1 )PAPR K

PAPRCCDF e−= − −                                               (8) 
In the above equation, K expresses the number of subcarriers. 

3. Proposed Method with Long Short-term Memory Neural Network 
(LSTM-NN) and Training the Data 

We have proposed an underwater acoustic OFDM communication system to reduce the PAPR 
and nonlinear distortion. The distortion which is caused by PA increases the BER and degrades 
the performance of the communication system. To resolve this issue, we need to train the data 
using the LSTM-NN at the transmitting end in such a way that it should learn quickly and have 
some memory. The input signals are fed to the transmitter end where high energized peaks 
appear, the proposed algorithm minimizes those high peaks. And, before making PA in a non-
linear region, the training of data is needed at the transmitter side so that a receiver may not 
experience the BER problem resulting in loss of information. Several PAPR mitigation 
methods based on DNN have been proposed in the literature. But here, we have employed the 
recurrent neural network (RNN) based LSTM-NN. To understand LSTM-NN, we must know 
about RNN. The RNN is widely used to solve many problems and it has many applications 
such as object tracking, recognition of voice, and detection of objects. RNNs are different from 
simple neural networks as RNNs collect information and remember it for the time being. Also, 
RNNs are independent of weights and input information. The RNN has much importance with 
optimum efficiency, but these networks can work up to fewer steps (up to 5 to 10 steps). For 
further increments in steps i.e., hidden layers, that can be handled by another method which is 
LSTM-NN (can handle up to 1000 steps). 
 

 
Fig. 2. Flowchart of proposed LSTM-NN 
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Fig. 2 shows the flowchart of the proposed algorithm which reduces the PAPR by selecting 
the data which has the lowest PAPR value in the system. Firstly, from the OFDM symbols, it 
estimates the PAPR and then selects those data for transmission which does not have high 
PAPR and distortion. The next sub-section describes the overall mechanism of the proposed 
algorithm and principal derivation. 

3.1 Connection Temporal Classification 
In the learning process, DNN classifies frame levels in finding PAPR during communication, 
in the same way, RNN also follows the same rule. In which each frame is being targeted to be 
learned, the alignment determines the separating line between higher peaks and lower peaks, 
which is done by the Hidden Markov Model (HMM). Table 1 illustrates the training and 

performance of the state of the trained model with 77400 6∗×  the data set, which takes a little 
more time and iterations to train the model that is less than or equal to 74.59 seconds. The 
HMM is employed and the MSE is 0.00138 at 132 iterations with random data. 

 
The training model of HMM performs well but does not provide ideal performance where 
secure and reliable communication is required. For that connectionist temporal classification 
(CTC) is used to perform such operations [49], which doesn’t require the alignments for the 
classification of input data and targeted data in the learning process. There is only one 
separated unit for each part, i.e., the higher peaks unit and lower peaks unit. And there is also 
an ‘Empty’ unit added, referred to as no peak’s occurrence. The empty unit differentiates the 
higher peaks and lower peaks in the proposed system. The probability of an empty unit with 
indexing k  in the amount of time t  can be given as: 

                                              
exp( )( , )
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k
t

r k
t

yP k t x
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∑ ′

                                                       (9) 

Where x  is the input, k
ty  is the element of the output, and a  is the alignment of CTC at the 

length T  of mentioned units i.e. units with peaks and including empty units. So, the 
probability of a  can be defined as the product of the occurrence of probabilities at each time 
step, 
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1

r t

T
P a x a t x

t
= ∏

=
                                                      (10) 

There are so many high peaks that occur, and we have separated them from an empty unit in 
which high peaks don’t occur. After this process we add the higher peaks, so the probability 
of high PAPR at the output can be given as,  
                                                 

1

r Pr( )

( )

P ( ) a x

a B y

y x
−∈

= ∑                                                        (11) 

As we don’t know the exact position of higher peaks for that we perform a summation 
operation then those places will be stored in the memory of LSTM-NN. Afterward, the model 

Table 1. Training the Data 
Training 

Model  
Data Needed Time of Training Fit Goodness 

Hidden Markov 
Model 

77400 6∗×  
Number of OFDM 
symbols = 900 

74.59sec.≤   
MSE: .00138 at 132 iterations 
Data Division  
Random  
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is trained using a CTC function with targeted data *y  such as 

                                               *( ) log Pr( )CTC x y x= −                                                    (12) 

3.2  Network Architecture 

The input sequence of the RNN network is denoted as 1( ,..., )Tx x x= , the hidden layer with 

1( ,..., )Th h h= , and an output layer sequence is 1( ,..., )Ty y y=  by iterating the following 

equations from 1 :t to T=    

                                           ( )1h H W x W h bt ih t hh t h= + +−                                             (13) 

                                                       ho t oy W h bt = +                                                              (14) 

Where ihW  are the matrices of weight belonging to the hidden layer, hb  is the bias vector in 
the hidden layer, and H  is the activation function. In [50] Hochreiter & Schmidhuber built 
memory cells for purpose of storing the previous data for a long range of length. H  can be 
illustrated in the following functions, 
                                           1 1( )t xi t hi t ci t ii W x W h W c bσ − −= + + +                                         (15) 
                                        1 1( )xf t hf t cf t ff W x W h W c bt σ − −= + + +                                        (16) 

                                       1 1tanh( )t t t xc t hc t cc f c i W x W h bt − −= + + +                                     (17) 

                                          1( )t xo t ho t co t oo W x W h W c bσ −= + + +                                          (18) 

                                                           tanh( )t t th o c=                                                          (19)  
The sigmoid function is denoted by σ , while other variables for defining input gate, output 
gate, forget gate, and vectors for cell activation are given as , ,i f o and c  respectively. 

These variables have size as a hidden vector h . We also have assigned the subscripts to the 
weight matrix, for example hiW  representing an output hidden matrix, in xoW  represents the 
output-input gate matrix. The noticeable point is that in the cell vector, the m  element will 
only accept the input from the m  while declining the bias vectors because gate-cell ciW  
matrices are always diagonal to each other. The missing function by previously used RNN is 
the use of only back context and is also known as unidirectional, on other hand finding PAPR 
in a hydro-acoustic medium requires a bi-directional method known as the bidirectional 
recurrent neural network (BRNN). In which two hidden layers are placed separately for the 
processing of the data. In given Fig. 3 and Fig. 4, tx   shows the input and ty  is the output, 

whereas h


 is the sequence computed by BRNN, and the arrow shows the forward direction, 
and h



in the backward direction. By continuously repeating the process in a backward 
to 1t T=   and forward 1 tot T=  direction, the output is updated and is as follows, 

                                            1( )t txh hh hh H W x W h bt −= + +  

 

                                                 (20) 

                                            1( )t txh hh hh H W x W h bt += + +  

 

                                                 (21) 

For long-range and operating input in both directions, BRNN and LSTM can be added. The 
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deep architectural design has made the hybrid systems advanced, which can represent the 
information at a much higher level. 

 
Fig. 3. The memory cell of Long-short Term neural network 

 
Fig. 4. Bidirectional Recurrent Neural Network. 

4. Energy Efficiency Model 
The overall EE model is derived for the proposed model in this subsection. To check the 
performance, we describe the EE metric, which can be expressed as 
                                                        / rEE SE P=                                                                (22) 

Here, SE  represents the obtainable rate which is in /bps hz  and rP  is the consumption of 
related power.  For the easier implementation of the system, we are only concerned with the 
power consumption of PA. For instance, paP  and the IFFT computation for VLSI power 

consumption we denote .i
P , in the end, rP can be further evaluated into the following two 

parts:  
                                                       ,r pa i

P P P= +                                                                  (23) 
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There are also other components of power consumption that may affect the performance of 
EE. While some power components do not have too much influence on EE in the proposed 
system and the traditional OFDM systems. 
The relationship of txP  (transmitted power), and paP  is further illustrated as 

                                                        ,tx paP Pη=                                                                    (24) 
 Here η  defines the efficiency of PA, which mainly depends upon the type of PA i.e., A, B, 
C, and AB, etc. Using a different type of PA may affect efficiency, while the logical design of 
the proposed method is not affected, such as the efficiency of PA class B. Henceforth, η  can 
be given as, 

                                                   (%) 100,
4 p
πη = ×                                                             (25) 

In equation 25, the square root of input back-off (IBO) is given as p . The IBO is defined as 
the ratio of input power maxP   (saturation power) of PA and average power aveP . And it can 
be expressed as follows: 

                                             max
10( ) 10log

ave

PIBO dB
P

 
=  

 
                                                   (26) 

If the IBO is increased, the distortion can also be minimized, it also reduces the power 
efficiency. The value of η  depends upon the PAPR and the PAPR is dependent on the number 
of subcarriers and bandwidth.  For calculation of ,i

P   it is necessary to explain Gflop (Giga 

Floating point operation/second) for the IFFT and it can be shown as 

                                                 2
( )( ) .log ( ),u

u
s

T BGflop T B
T

ζ =                                           (27) 

Where uT  illustrates the guard interval (GI) and sT  shows the symbol duration. At present, 
we will derive the SE to obtain the EE derivation in equation (22). Hence at the receiver side, 
the signal can be illustrated as: 
                                                 ˆ( ) ( ) ( ) ( )y n ph n x n w n= +                                               (28) 

                                              ( ) ( ) . ( ) ( ) ( ) ( )y n ph n x n ph n d n w nα= + +                     (29) 
Here, p  shows the received power, the additive white Gaussian Noise (AWGN) is 
symbolized by ( )w n . The channel coefficient is given as ( )h n  that can be further 
decomposed as: 
                                                        ( ) ( ). ( ),h n g n nξ=                                                        (30) 
In equation 30, ( )g n expresses zero-mean and single variance . .i i d  channel coefficients, and 
the path loss component is shown by ( )nξ . Finally, from equation 30 the signal-to-noise ratio 
and distortion ratio (SDNR) can be derived as follows: 

                                         

( )
22( ) . ( )

2 22( ) ( ) ( )

p n E x n
y

p n E d n E w n

ξ α

ξ

 
  =

  +  

                                    (31) 
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The estimated obtainable ratio can be given as: 
                                                      [ ]2. log (1 ) ,SE K E y≈ +                                                (32) 

Here, the value of K  is equal to .sl p u

sl s

T T T
T T
−   

   
   

 representing the scaling factor for the 

overhead of the pilot and the guard interval. 

                                          
[ ]
( )

2. log (1 )

pa i

k E y
EE

P P
+

=
+

                                                        (33) 

In this article, we will employ equation 33 as a performance metric for the analysis. In 
functional and real conditions to obtain the best SNR performance without adding the 
proposed LSTM-NN reduction algorithm and for the case of adding the proposed method, it 
must utilize more expensive devices to give out the power compared with the latter. For 
instance, the SNR without adding the proposed scheme can be expressed as 

                                   
0 0

1 1. .
no
pano no

tx no

p
SNR p

N B N Bη
= =                                                      (34) 

In the above equation, the power of TX is denoted by no
txp . The power consumption is given 

no
pap . The efficiency of PA is illustrated as noη  in the case of the general OFDM system. For 

the given bandwidth the noise power is expressed as 0N B . Finally, the SNR in the proposed 
method is represented as: 

                                        .

0 0

1 1.
p
pap p

tx p

p
SNR p

N B N Bη
= =                                                (35) 

Here, p
txp  shows the power of TX, similarly, the power consumption is expressed as p

pap ,  pη
shows the power efficiency of the proposed method. If no pSNR SNR= , it is clear that the 
value of no

pap  should be larger than ( ). .,p no p
pa pa pap i e p p> . It is because the efficiency of the 

traditional method is less than that of the proposed LSTM-NN scheme ( )no pη η< . We have 
added these parameters to the formula of the EE equation. And the computational complexity 
of the proposed is also shown in the same equation. 

5. Simulation Results with Data Transmission 
In this section, the simulation is performed for the proposed LSTM-NN method. The 
transmission of real-time data is compulsory for UAC to design novel methodologies and 
signal processing techniques. Therefore, we transmitted a WAV file in the simulation and kept 
the signal-to-noise ratio between 20-25dB. The simulation was performed on MATLAB 2017a 
adopting 16-QAM modulation. Firstly, we measured the PAPR and then compared it with 
traditional methods, besides that the channel impulse response (CIR) and sound speed are also 
measured in the initial stages. Next, we considered different parameters to verify the 
performance of the proposed method such as signal constellation points at the receiver side 
with BER. Finally, the relative energy analysis is illustrated. The simulation parameters are 
given in the following Table 2. 
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Table 2. The UAC OFDM system Simulation Data 
 

 

 

 

 

 

 

5.1  Signal Transmission and PAPR 
This subsection is dedicated to the transmission of data from the UAC transducer. The 
parameters such as PAPR and transmission of the signal before and after are being taken into 
consideration. In Fig. 5 the complementary cumulative distribution function (CCDF) of PAPR 
is depicted at 410− , the PAPR of the original signal is approximately 11.6 dB which can be 
seen in the blue curve. We compared the PAPR performance of deep learning neural network 
(DNN) auto-encoder-assisted OFDM and neural network-assisted active constellation (NN-
ACE) with our proposed model, as shown in the magenta and cyan curve the PAPR of DNN 
auto-encoder OFDM and NN-ACE is around 6.8 dB and 4 dB, respectively. After comparison 
one can observe that the proposed LSTM-NN outperforms the conventional methods. The 
PAPR is reduced to 3.8 dB. Hence, efficient performance can be observed for PAPR in the 
LSTM-NN method. 
 

 
Fig. 5. PAPR comparison of proposed with DNN (Autoencoder) and NN-ACE 

 
The signal faces severe distortion which is caused by PA in the communication system. In the 
16-QAM constellation, the OFDM symbols are shaped, and one can see the transmission of 
data before and after the PA at the transmission side as shown in Fig. 6. The non-linear 
distortion is extensively reduced in the LSTM-NN based method because the data is processed 
and filtered in the projected network. We kept sure that the PA is operating in the linear region, 
if the PA is not working in the linear region, it will distort the signal, so we have taken a 4dB 
value of the PA saturation level.  
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Serial No. Parameter Data 
01 Sampling frequency 48 kHz 
02 Bandwidth 6 -12 kHz 
03 No. of Subcarriers 512 
04 Number of data carriers 851 
05 Number of pilots 125 
06 Number of Null carriers 48 
07 Symbol period 170.67ms 
08 CP length 40ms 
09 Spectrum Usage 0.67 b/s/Hz 
10 Data rate 4.04 kb/s 
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Fig. 6. Signal constellations, scattering plot before and after the power amplifier 

5.2  Underwater Acoustic Channel Impulse Response with Sound Speed 
In this part, the details about the experiment are given such as depth, separation, and position 
of the transmitter and receiver. The impulse response of the channel with a sound speed profile 
is executed for evaluating the performance of the proposed method. Fig. 7 illustrates the basic 
framework of the UAC system with a single transmitter (TX) and single receiver (RX). , In 
the figure, Psb exhibits the route between TX and RX having s  surface and b  bottom 
reflections.  Five different paths can be observed in the figure, for instance, the signal’s 
reflection from the surface only 10P  reflected from the seabed 01P , and bounced from both the 

surface and bottom 11P , 12P  including the direct path 00P  which is considered the shortest path 
between the TX and the RX. Furthermore, L shows the distance between the transmitter and 
receiver, which is 2km. The transducer is dipped 12m in the water and the depth of the 
hydrophone is 14m.  

 
Fig. 7. UAC using the Bellhop ray-tracing model with a single transmitter & receiver. 

 
The underwater acoustic channel has been established based on the BELLHOP ray-tracing 
model[2, 40]. The channel impulse response is measured from the sound speed as shown in 
Fig. 8, several multipath and delayed arrivals can be observed which is due to tank surface 
reflection, tank bottom reflection, and both, also rebounds from the walls. The sound speed 
profile which is shown in Fig. 9 was measured in an underwater acoustic water tank at Harbin 
engineering university during experimentation on October 25, 2020. As we mentioned earlier, 
the data from an experiment has been utilized to get the optimum results and for simulation 
purposes to design a novel signal processing methodology.  
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Fig. 8. Channel impulse response at 2KM between TX & RX 

 
Fig. 9. Sound speed in the water measured during the experiment 

 

5.3  Signal Reception and Bit Error rate  
The signal reception and BER are studied in this sub-section. After the estimation of the 
channel, the decoder uses the information of output and of the channel equalizer to perform 
decoding based on LSTM-NN and updates the posterior probability of decoded symbol 
information where also our proposed algorithm is employed. Fig. 10 depicts the data received 
from the hydrophone using the 16-QAM constellation at 25 dB SNR. The received data is 
much scattered out from the QAM quadrature because of the noisy multipath UAC channel, 
and the Doppler effect with spreading. While comparing Fig. 10 and Fig. 6 (subsection 5.1) 
one can see the impact of different parameters affecting the UAC channel which makes it a 
more challenging task in UAC. Although in our proposed model, the data is much nearer to 
the constellation, so we can demodulate it very easily. Fig. 11 represents the BER of the 
communication system in the BELLHOP channel using 16-QAM. The curves represent the 
different neural network methods with proposed and conventional schemes. It can be observed 
from the figure that the proposed LSTM-NN achieves efficient BER performance over the 
traditional OFDM signal. Also, the performance is compared with DNN (Auto-encoder) and 
NN-ACE. 
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Fig. 10. Signal constellations, scattering plot of transmitted (TX) and received symbols (RX) 

 
Fig. 12 illustrates the performance comparison of BER after using the OFDM modulation 
scheme at different types of constellations such as QPSK, 16-QAM, and 64-QAM, 
respectively. The black lines in the figure represent the QPSK constellation, one for simulation 
and another for real data transmission. It can be seen that there is a slight difference between 
the lines of QPSK when we transmit the real data at an SNR range of 25-30dB. The same 
SNRs are taken for the 16-QAM constellation having magenta curves. Also, a small difference 
is observed when we compare the simulations with the real transmission of data. In the end, 
for 64-QAM, we have shown in the blue curves, the range of SNRs is similar to that of QPSK. 
The obtained results show that the 64-QAM constellation has higher BER as compared to its 
counterparts. Here, we have employed 16-QAM for UAC, as it can provide us with significant 
gains and benefits for data transmission. The 64-QAM is a higher-order form of constellation 
type which carries extra bits of information per symbol, and it has a slightly higher BER. In 
the figure, the QPSK outperforms the rest of the schemes. The QPSK lashes the rest of the 
constellation schemes due to the small margin of bits transmitted through it.  
 

 
Fig. 11. Comparison of bit error rate with proposed LSTM-NN, DNN (Autoencoder) based OFDM 

and NN-ACE 
 

5.3 Energy Efficiency Comparison 
In Fig. 13, we have presented the EE comparison of different PAPR reduction schemes. The 
DNN (autoencoder) and NN-ACE are also shown in the figure with the proposed LSTM-NN 
model. The appropriate IBO (input back-off) is applied which is based on the performance of 
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PAPR reduction when the CCDF of PAPR is equal to 410−  as shown in Fig. 5 (section 5.1). 
The EE depends upon the performance of PAPR in this model. When the SNR is equal to 
30dB it shows the best performance, and the proposed model is applied. If the SNR is higher 
than 30dB we can get better performance in terms of EE because the proposed model reduces 
the PAPR at higher SNR. Hence it is proved that our proposed model gives us the improved 
performance of the overall system and the system can be regarded as energy efficient. The 
proposed method gives us the optimum performance of EE for all the SNR regions when 
compared with other PAPR reduction methods. 
 

 
Fig. 12. BER performance of OFDM system over BELLHOP channel in UAC using a different type 

of constellations 

6. Conclusions and Future Work 
The OFDM is considered as significant modulation technique in the UAC system. The slow 
speed of sound, limited bandwidth, severe multipath, high Doppler shifts, and EE makes UAC 
more challenging. This paper proposed a machine learning-assisted LSTM-NN for the 
underwater acoustic OFDM communication system. The PAPR and nonlinear distortion are 
reduced with the proposed machine learning method, then different parameters are taken into 
consideration which affects the performance of the overall communication system to increase 
the EE. The real-time data is transmitted through the BELLHOP channel model by performing 
simulations. It is proved that our proposed LSTM-NN performs efficiently as compared to 
conventional DNN-based autoencoder and NN-ACE. Finally, the transmitted and received 
data is shown in the 16-QAM quadrature which proves that most of the data is close to the 
quadrature and can be demodulated and decoded easily. Also, the BER performs well for the 
LSTM-NN. By using this technique one can design a novel UAC modem/transceiver that will 
be energy efficient, and it will work proficiently. In future work, the Doppler compensation 
and time-varying nature of the UAC channel can be considered as an optimal research 
direction for the proposed method. Another potential research opportunity is an exhaustive 
search algorithm to perform optimal encoding and decoding order based on LSTM-NN which 
can omit the need for channel equalization, synchronization of the carrier frequency, 
modulation, and demodulation. The proposed system consists of a single transmitter and single 
receiver one can also implement our model to design an underwater acoustic wireless sensor 
network. 
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Fig. 13. Energy efficiency (bps/Hz/W) Vs. SNR [dB] with LSTM-NN, DNN(Autoencoder), NN-ACE 

scheme, and without PAPR reduction 
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