• Title/Summary/Keyword: Underwater Exploration

Search Result 81, Processing Time 0.019 seconds

Media Access Control Protocol Considering MANET of Underwater Environment (수중 환경의 MANET을 고려한 매체 접근 제어 프로토콜)

  • Shin, Seung-Won;Yun, Nam-Yeol;Lee, Jin-Young;Lee, Seung-Joo;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.97-107
    • /
    • 2013
  • Underwater wireless communication systems can be useful for underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, vessel sinking exploration, and so on. However, unlike terrestrial wireless communication, underwater wireless communication should consider factors such as long propagation delay, limited transmission capacity, high bit-error rate due to potential loss in power, ambient noise, man-made noise, multi-path, etc., because of the inherent characteristics of water. Thus, in this paper, we propose a suitable media access control(MAC) protocol that applies a combination of the ALOHA MAC protocol and the CSMA/CA MAC protocol to underwater environment. We further propose a mathematical analysis model to evaluate performance. We also verify performance improvement in the proposed scheme in comparison with existing MAC protocols.

Design and Experimental Study of a Launch and Recovery System for an Underwater Tow-fish with Consideration of Sea State (해상상태를 고려한 수중예인체 진회수시스템 설계 및 실험)

  • Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young;Kim, Myung-gyung;Kim, Jung-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.332-338
    • /
    • 2017
  • Launch and recovery system(LARS) is required to perform an USV-based underwater exploration. Through the analysis of the requirements according to the scenario of underwater exploration, the mechanism of LARS and the conceptual design of the mechanical parts of LARS are carried out. In addition, a USV motion can be induced due to environmental disturbances such as waves, so the detailed design of LARS for recovering the underwater tow-fish stably in consideration of the USV motion is performed. To verify the performance of launch and recovery operations, LARS and test bed were developed. The results show that the proposed LARS can stably launch and recovery an underwater tow-fish.

Introduction to Submarine Power Cable Detection Technology (해저 전력 케이블 탐지 기술 소개)

  • Daechul Kim;Hyeji Chae;Wookeen Chung;ChangBeom Yun;Jong Hyun Kim;Jeonghun Kim;Sungryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Offshore wind power is increasingly regarded as a viable solution for reducing greenhous emissions due to the construction of wind farms and their superior power generation efficiency. Submarine power cables play a crucial role in transmitting the electricity generated offshore to land. To monitor cables and identify points of failure, analyzing the location or depth of burial of submarine cables is necessary. This study reviewed the technology and research for detecting submarine power cables, which were categorized into seismic/acoustic, electromagnetic, and magnetic exploration. Seismic/acoustic waves are primarily used for detecting submarine power cables by installing equipment on ships. Electromagnetic and magnetic exploration detects cables by installing equipment on unmanned underwater vehicles, including autonomous underwater vehicles (AUV) and remotely operated vihicles (ROV). This study serves as a foundational resource in the field of submarine power cable detection.

Development of Controllers and Battery Management Systems(BMS) for Underwater Drones Equipped with Multi-channel BLDC Motors (다채널 BLDC 모터가 장착된 수중 드론용 컨트롤러 및 배터리 관리시스템(BMS) 개발)

  • Jong-Sil Kim;Yeong-Tae Ju;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.405-412
    • /
    • 2023
  • With the development of drone and ICT convergence technology, the use of underwater drones such as leisure underwater drones such as underwater exploration for fishing and industrial drones such as bridge piers is increasing. Existing motor controllers are suitable for aerial drones and these can increase the completeness of underwater drones and their reliability in motor control by developing BLDC motor controllers dedicated to underwater drones. By developing a battery management system (BMS) exclusively for underwater drones, battery stability was ensured by checking the state of charge, checking the state of discharge, adjusting cell balancing, and implementing high/voltage protection functions.

Implementation of a Fragmentation Method for Flow Control in Underwater Multi-media Communication (수중 다중 매체 통신의 흐름제어를 위한 단편화 기법 구현)

  • You, Dongsun;Shin, DongHyun;Lim, Seungsoo;Jeon, Seonghyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.819-829
    • /
    • 2020
  • Underwater communication is necessarily useful for various application domains such as saving of human lives from underwater disasters, marine resource exploration, underwater military fields, underwater environment or ecosystem monitoring, fish farm monitoring and management, etc. Even though the acoustic wave has been the main underwater communication media until now, several media such as optical waves, VLF/ELF waves, magnetic fields, and infrared rays also began to be treated as possible media for underwater communication. If these underwater communicate-possible media are used mixing together, the underwater communication can be much more reliable and efficient through complementing the disadvantages of each communication media with advantages of other communication media. In fact, mixing and using multi-media for underwater communication requires the data flow control in the connection process of different media due to their communication speed gaps and bandwidth differences, and, specially, in the flow control, the appropriate message fragmentation technique is required inevitably. For this reason, this paper presents a fragmentation framework and technique necessary to the flow control in the underwater multi-media communication. In addition, through its implementation and experiments, this paper shows the feasibility on the realization of the multi-media based underwater communication.

Implementation of Underwater Exploration Robot using Arduino (아두이노를 이용한 수중탐사로봇 구현)

  • Choi, Duk-Kyu;Woo, Hyo-Sang;Jo, Hyeon-Gi;Jo, Gyeong-Min;Jung, Jae-Hyeon;Heo, Chang-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.401-402
    • /
    • 2017
  • 본 논문에서는 아두이노와 스마트 폰 어플리케이션을 이용한 수중탐사로봇을 구현하였다. 구현된 시스템은 스마트폰으로 간편하게 조종을 할 수 있으며, 한눈에 알아보기 쉽게 수중의 영상 및 온도와 ph값, 수질 오염도를 체크할 수 있다. 양식업 사업에서 실시간으로 체크해 빠른 대처와 조치를 취할 수 있어 효율적으로 양식업을 관리 할 수 있다는 점에서 기대효과를 볼 수 있다. 또한 해양사고 발생 시 수중탐사로봇이 먼저 투입하여 인명구조를 하는 인력과 제 2의 피해자가 최소화 될 수 있고 더 이상 인명피해가 나지 않도록 안전적인 측면에서도 기대할 수 있다.

  • PDF

Analysis of trends in the use of geophysical exploration techniques for underwater cultural heritage (수중문화유산에 대한 지구물리탐사 기법 활용 동향 분석)

  • LEE Sang-Hee;KIM Sung-Bo;KIM Jin-Hoo;HYUN Chang-Uk
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.174-193
    • /
    • 2023
  • Korea is surrounded by the sea and has rivers connecting to it throughout the inland areas, which has been a geographical characteristic since ancient times. As a result, there have been exchanges and conflicts with various countries through the sea, and rivers have facilitated the transportation of ships carrying grain, goods paid for by taxes, and passengers. Since the past, the sea and rivers have had a significant impact on the lives of Koreans. Consequently, it is expected that there are many cultural heritages submerged in the sea and rivers, and continuous efforts are being made to discover and preserve them. Underwater cultural heritage is difficult to discover due to its location in the sea or rivers, making direct visual observation and exploration challenging. To overcome these limitations, various geophysical survey techniques are employed. Geophysical survey methods utilize the physical properties of elastic waves, including their reflection and refraction, to conduct surveys such as bathymetry, underwater topography and strata. These techniques detect the physical characteristics of underwater objects and seafloor formation in the underwater environment, analyze differences, and identify underwater cultural heritage located on or buried in the seabed. Bathymetry uses an echo sounder, and an underwater topography survey uses a side-scan sonar to find underwater artifacts lying on or partially exposed to the seabed, and a marine shallow strata survey uses a sub-bottom profiler to find underwater heritages buried in the seabed. However, the underwater cultural heritage discovered in domestic waters thus far has largely been accidental findings by fishermen, divers, or octopus hunters. This study aims to analyze and summarize the latest research trends in equipment used for underwater cultural heritage exploration, including bathymetric surveys, underwater topography surveys and strata surveys. The goal is to contribute to research on underwater cultural heritage investigation in the domestic context.

Performance analysis of an adaptive OFDM over an underwater acoustic channel (수중 음향 채널에서 적응형 OFDM의 성능 분석)

  • Im, Yo-Woong;Kang, Hee-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.509-515
    • /
    • 2010
  • Such as disaster rescue in deep water, undersea exploration and monitering for environmental pollution, many applications require the acoustic communication for high data rate over underwater acoustic channel. As underwater channel is very complex and is time-varying, conventional single carrier communication has good performance. In this paper, An adaptive OFDM system is analyzed for high data rate and reliability and rubust service over UWA channels. Through the adaptive system, we show threshold switching for an adaptive algorithm.

Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line (자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발)

  • Kim, Deok-Jin;Park, Dong-Won;Park, Yeon-Sic
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1973-1977
    • /
    • 2006
  • This paper reports the absolute position tracking algorithm of underwater vehicles such as ROV, AUV in global region by fusing sensor informations of IMU, DVL, USBL, DGPS etc. This algorithm is to be used in the position tracking of the 6,000m class deep-sea unmanned underwater vehicle, HEMIRE for scientific exploration.

Design and Performance Evaluation of Hierarchical Protocol for Underwater Acoustic Sensor Networks (수중음파 센서네트워크를 위한 계층별 프로토콜의 설계 및 성능 평가)

  • Kim, Ji-Eon;Yun, Nam-Yeol;Kim, Yung-Pyo;Shin, Soo-Young;Park, Soo-Hyun;Jeon, Jun-Ho;Park, Sung-Joon;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.157-166
    • /
    • 2011
  • As underwater environment monitoring system's interest has increased, the research is proceeding about underwater acoustic sensor network. Underwater sensor network can be applicable to many fields, such as underwater environment monitoring, underwater resource exploration, oceanic data collection, military purposes, etc. It is essential to define the PHY-MAC protocol for revitalization of the underwater acoustic sensor network which is available utilization in a variety of fields. However, underwater acoustic sensor network has to implement by consideration of underwater environmental characteristics, such as limited bandwidth, multi-path, fading, long propagation delay caused by low acoustic speed. In this paper, we define frequency of adjusted PHY protocol, network topology, MAC protocol, PHY-MAC interface, data frame format by consideration of underwater environmental characteristics. We also present system configuration of our implementation and evaluate performance based on our implementation with test in real underwater field.