• Title/Summary/Keyword: Underwater Acoustic Communication Channel

Search Result 158, Processing Time 0.02 seconds

Performance Analysis of CDMA and OFDM on Underwater Acoustic Environments (수중 음향 환경에 따른 CDMA와 OFDM 성능 분석)

  • Lee, Ho Jun;Chung, Jaehak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.135-142
    • /
    • 2018
  • This paper compares and analyzes advantages and disadvantages of CDMA(code division multiple access) and OFDM(orthogonal frequency division multiplexing) transmission techniques for underwater acoustic channel environments. Computer simulations were carried out in various underwater acoustic channels with varying r.m.s.(root mean square) delay, doppler frequency and the number of multipaths. When r.m.s. delay and doppler frequency are within the tolerance of designed transmission schemes, the computer simulations show that CDMA has better BER performance than that of the OFDM. However, when the doppler frequency exceeds the tolerance, BER performance of the CDMA decreases.

Performance Evaluation of Underwater Acoustic Communication using Transmit Diversity in Water Tank (수조에서 전송 다이버시티를 사용한 수중음향통신의 성능 고찰)

  • Park, Chan-Sub;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.269-273
    • /
    • 2013
  • Underwater acoustic channels are generally recognized as one of the most difficult communication media because of the multipath propagation, dispersion, and so on. MIMO (Multiple-input multiple-output) techniques have been actively pursued in underwater acoustic communications recently to increase the data rate over the bandwidth-limited channels. The transmit diversity techniques can be applied in this case, and one of them is Alamouti's scheme. In this paper the performances of the transmit diversity technique are evaluated via experiment. Two transmitters and two receivers were used in experiment, and the experiment was performed in indoor water tank. The error rate 5~8% was confirmed in experimental results, and these are the improved values than the error rate 14.8% for SISO(Single-input single-output) channel under same data rate condition.

Optimizing of BCJR Equalization with BCJR Decoder in the Underwater Communication (수중통신에서 최적의 BCJR 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2094-2100
    • /
    • 2014
  • The performance of underwater acoustic communication system is sensitive to the inter-symbol interference due to delay spread develop of multipath signal propagation. Thus, it is necessary technique of equalizer and channel code to eliminate inter-symbol interference. In this paper, underwater acoustic communication system were analyzed by experiment using these techniques on the Kyeong-chun lake, Munkyeong City. Based on the results of experiment, we confirmed that the performance of the proposed iterative BCJR equalization method is improved by increasing the number of iterations.

A Study on the Equalization for Low Power Underwater Acoustic Communication (저전력 수중음향통신을 위한 등화기에 관한 연구)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.169-173
    • /
    • 2012
  • In this paper, we propose an equalizer to minimize the inter-symbol interference when PSSK(Phase Silence Shift Keying) technique is applied to the low power underwater acoustic communication. PSSK is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation), and it was proposed for low power communication. However, it has poor performance due to delay spread of underwater channel. In this paper, we propose a decision feedback equalizer to minimize the error in PSSK receiver. The sea trial was performed to evaluate the performance of the proposed method. In the result, the BER of PSSK was $4.36{\times}10^{-2}$ before the equalizer was applied, but the BER of PSSK was $3.95{\times}10^{-4}$ after the proposed equalizer was applied.

Underwater Acoustic Channel Bandwidth and its Effects on BFSK/BPSK Performance (수중음향채널의 대역에 따른 BFSK/BPSK 전송 성능)

  • 박지현;윤종락;박규칠
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1243-1249
    • /
    • 2004
  • In this paper, the multipath effect on underwater acoustic channel bandwidth and BFSK and BPSK bit error dependancy on channel bandwidth are analyzed. The multipath is modeled as a discrete multipath and a continuous multipath and the channel bandwidth is expressed as a function of multipath delay spread constant. Bit error characteristics on the channel bandwidth and the criteria of the multipath delay spread constant are found through the numerical simulation. The transmission bit rate of less than 100bps in the water tank which has a channel bandwidth of 100Hz, is a consistent result with the numerical simulation.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Coherence Bandwidth and Coherence Time for the Communication Frame in the Underwater of East Sea (동해 천해환경에서 수중 통신 프레임 설계를 위한 상관 대역폭과 상관 시간의 산출)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2010
  • For effective underwater digital communications, a frame structure is used, which includes pilots in time and frequency domains for channel estimation at a receiver. To estimate channel precisely, the each pilot should be located less than coherence time and coherence bandwidth. This paper measured underwater communication environments to provide coherence time and coherence bandwidth. Based on the measurement, the paper exhibits the calculated coherence time and coherent bandwidth is adequate by computer simulations.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Performance Enhancement of Underwater Acoustic Communication System Using Hydrophone Transmit Array (하이드로폰 송신 어레이를 이용한 수중 음향 통신 시스템의 성능 향상)

  • 이외형;손윤준;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.606-613
    • /
    • 2002
  • In this paper we applied a transmit beamforming technique to the underwater acoustic communication system for high rate data transmission. A prototype transmit system was designed and implemented with the general purpose DSP processor and multiple digital-to-analog converters. The performances of the implemented system were evaluated by the experiment in water tank. In order to simplify the procedure the channel coding and equalizer were omitted. And the simplest OOK (On-Off Keying) technique in digital communication methods was applied. The experimental result shows that the transmission data rate is higher about 3 times in the case of 5 hydrophone transmitting may than 1 hydrophone transmitter at bit error rate 10/sup -2/. We verified that the maximum data rate was 400 bps for speech signal transmission in water tank.

Doppler shift frequency estimation and compensation in underwater acoustic communication using triangle spread carrier technique (Triangle spread carrier 기법을 이용한 수중음향통신에서 도플러 천이 주파수 추정 및 보상 )

  • Chang-hyun Youn;Hyung-in Ra;Kyung-one Lee;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.169-180
    • /
    • 2023
  • The performance of underwater acoustic communication is greatly affected by multipath propagation and Doppler spread. This paper proposes a new communication technique, the Triangle Spread Carrier (TSC) technique, by modifying the existing Sweep Spread Carrier (SSC) technique that is strong in a multipath propagation environment. The proposed TSC technique is a form in which the up-chirp and down-chirp signals have repeated carriers, and each correlation function characteristic is used to estimate and correct the Doppler shift frequency of the receiving signal. To demonstrate the performance of the proposed TSC technique, we present the results of simulations using underwater channel simulators and sea trial conducted in the East Sea. When demodulating using only the estimated Doppler shift frequency as a result of the sea trial, the uncoded bit error rate was up to 0.194, but when the proposed method was applied, the uncoded bit error rate was reduced to 0.001.