DOI QR코드

DOI QR Code

Triangle spread carrier 기법을 이용한 수중음향통신에서 도플러 천이 주파수 추정 및 보상

Doppler shift frequency estimation and compensation in underwater acoustic communication using triangle spread carrier technique

  • 투고 : 2023.04.11
  • 심사 : 2023.05.08
  • 발행 : 2023.05.31

초록

수중음향통신의 성능은 다중경로 전달과 도플러 확산에 크게 영향을 받는다. 본 논문은 다중경로 전달 환경에서 강인한 기존의 Sweep Spread Carrier(SSC) 기법을 변형하여, 새로운 통신기법인 Triangle Spread Carrier(TSC) 기법을 제안한다. 제안한 TSC 기법은 상승-처프와 하강-처프 신호가 반복되는 반송파를 갖는 형태이며, 각각의 상관함수 특성을 활용하여 수신 신호의 도플러 천이 주파수를 추정하고 보정한다. 제안된 TSC 기법의 성능을 입증하기 위하여 수중 채널 시뮬레이터를 이용한 모의실험과 동해에서 수행된 해상실험을 결과를 제시한다. 해상실험 결과 추정된 도플러 천이 주파수만을 이용하여 복조하였을 때 비부호화 된 비트 오류율은 최대 0.194였지만, 제안한 방법을 적용하였을 때 비부화화된 비트 오류율이 0.001로 감소하였다.

The performance of underwater acoustic communication is greatly affected by multipath propagation and Doppler spread. This paper proposes a new communication technique, the Triangle Spread Carrier (TSC) technique, by modifying the existing Sweep Spread Carrier (SSC) technique that is strong in a multipath propagation environment. The proposed TSC technique is a form in which the up-chirp and down-chirp signals have repeated carriers, and each correlation function characteristic is used to estimate and correct the Doppler shift frequency of the receiving signal. To demonstrate the performance of the proposed TSC technique, we present the results of simulations using underwater channel simulators and sea trial conducted in the East Sea. When demodulating using only the estimated Doppler shift frequency as a result of the sea trial, the uncoded bit error rate was up to 0.194, but when the proposed method was applied, the uncoded bit error rate was reduced to 0.001.

키워드

참고문헌

  1. Y. Yan, W. Yanbo, Z. Min, L. Dong, and T. Jun, "Efficient on-off keying underwater acoustic communication for seafloor observation networks," Appl. Sci. 10, 1-15 (2020). 
  2. C. Salvador, S. Antonio, V. C. Juan, M. Nirvana, and J. S. Juan, "Underwater acoustic wireless sensor networks: advances and future trends in physical, mac and routing layers," Sensors, 14, 795-833 (2014).  https://doi.org/10.3390/s140100795
  3. E. T. Michailidis, G. Tuna, G. Gezer, S. M. Potirakis, and K. Gulez, "ANN-based control of a multiboat group for the deployment of an underwater sensor network," IJDN, 10, 1-12 (2014). 
  4. S. Park and S.R. Lee, "Marine disasters prediction system model using marine environment monitoring" (in Korean), J. Korea Inst. Inf. Commun. Eng. 38C, 263-270 (2013).  https://doi.org/10.7840/kics.2013.38C.3.263
  5. T. D. Park, S. R. Lee, B. M. Kim, and J. W. Jung, "Analysis of an optimal iterative turbo equalizer for und erwater acoustic communication" (in Korean), J. Korea Inst. Inf. Commun. Eng. 38C, 303-310 (2013).  https://doi.org/10.7840/kics.2013.38C.3.303
  6. M. Stojanovic, "Underwater acoustic communications," Proc. IEEE Electro International, 435-440 (1995). 
  7. R. J. Urick, Principles of Underwater Sound 3th Edition (McGraw-Hill, New York, 1983), pp. 99-197. 
  8. Du. P, Zhu.X, Li.Y, "Direct sequence spread spectrum underwater acoustic communication based on differential correlation detector," Proc. ICSPCC, 1-5 (2018). 
  9. G. Han, C. Zhang, L. Shu, N. Sun, and Q. Li, "A survey on deployment algorithms in underwater acoustic sensor networks," International Journal of Distributed Sensor Networks, 9, 1-11 (2013). 
  10. P. V. Walree, T. Jenserud, and H. Song, "Characterization of overspread acoustic communication channels," Proc. ECUA, 952-958 (2010). 
  11. T. C. Yang, " Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am. 120, 2595-2614 (2006).  https://doi.org/10.1121/1.2345910
  12. P. Zhu, X. Xu, X. Tu, Y. Chen, and Y. Tao, "Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication," IEEE Access, 8, 13305-13314 (2020).  https://doi.org/10.1109/ACCESS.2020.2966072
  13. X. Cao, W. Jiang, and F. Tong. "Time reversal MFSK acoustic communication in underwater channel with large multipath spread." Ocean Eng. 152, 203-209 (2018).  https://doi.org/10.1016/j.oceaneng.2018.01.035
  14. Y. H. Zhou, F. Tong, K. Zeng, and Y. G. Chen. "Selective time reversal receiver for shallow water acoustic MIMO communications," Proc. IEEE OCEANS, 1-6 (2014). 
  15. K. G. Kebkal and R. Bannasch, "Sweep-spread carrier for underwater communication over acoustic channels with strong multipath propagation," J. Acoust. Soc. Am. 112, 2043-2052 (2002).  https://doi.org/10.1121/1.1504855
  16. H. Lee, J. Kang, J. Ahn, and J. Chung, "Performance analysis of UWA communication system by diversity in UWA channel" (in Korean), JCCT, 3, 191-198 (2017). 
  17. B. S. Sharif, J. Neasham, O. R. Hinton, and A. E. Adams, "A computationally efficient Doppler compensation system for underwater acoustic communications," IEEE J. Ocean. Eng. 25, 52-61 (2000).  https://doi.org/10.1109/48.820736
  18. R. Diamant, A. Feuer, and L. Lampe, "Choosing the right signal: Doppler shift estimation for underwater acoustic signals," Proc. 7th WUWNet, 1-8 (2012). 
  19. F. Yuan, Z.jia, J. Li, and E. Cheng, "STLFM signal based adaptive synchronization for underwater acoustic communication," IEEE Access, 7, 28734-28748 (2019).  https://doi.org/10.1109/ACCESS.2019.2901357
  20. O. Rabaste and T. Chonavel, "Estimation of multipath channels with long impulse response at low SNR via an MCMC method," IEEE Tran. Signal Process. 55, 1312-1325 (2007).  https://doi.org/10.1109/TSP.2006.888060
  21. B. Sklar and P. K Ray, Digital Communications: Fundamentals and Applications 2nd Edition (Prentice Hall PTR, New Jersey, 2001), pp. 183-184. 
  22. J. S. Kim, H. C. Song, W. S. Hodgkiss, and M. siderius, "Virtual time series experiment (VirTEX) simulation tool for underwater acoustic communication," J. Acoust. Soc. Am. 126, 2174 (2009).