• Title/Summary/Keyword: Underground water

Search Result 1,340, Processing Time 0.038 seconds

Analysis of Tree-rings for Inference of Periods in which Slow-moving Landslides Occur (나이테 분석을 통한 땅밀림 발생 시기 추정)

  • Park, Jae-Hyeon;Park, Seonggyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.62-71
    • /
    • 2020
  • With the aim of restoring slow-moving landslide areas, this study collected fundamental data from tree-ring analysis of curved trees in these areas. We collected both upper and lower stem disks to measure the azimuth angles of six trees with growth curvature caused by tension cracks. Additionally, we analyzed various factors in the slow moving landslide area. The geological strata and main constitutive rocks in the study area were anorthosite-formed in the Precambrian period; moreover, there were no intrusive rocks, other geological strata, geological folds, or faults. The talus with weathered rocks was distributed in the upper zone of the slow-moving landslide area. According to annual-ring analysis of curved trees and terrain analysis by satellite imagery, slow-moving landslide occurred from the top to the bottom end of the slope between 1999 and 2011. There was a significant relationship (P < 0.01) between the azimuth angle of cracks caused by the slow-moving landslide and the angle of the curved trees. These results suggest that the occurrence of slow-moving landslides could be confirmed through analysis of annual-rings of curved trees, underground water levels, and terrain (by satellite imagery).

On-Land Seismic Survey of Korea (한국의 육상 탄성파탐사)

  • Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.441-450
    • /
    • 2006
  • The on-land seismic survey in Korea was begun in mid-1960s. Kim et al.(1967) of Korea Geological Survey reported on the result of gravity and seismic reflection surveys conducted in the Pohang area for the period of 1963-64 to assess its possibility of oil entrapment. Hyun and Kim (1966) carried out a refraction survey on the tunnel wall. Since then, the KGS geophysicists had conducted seismic surveys on Kyungsang sedimentary basin as a main project for several years. In 1970s, on-land seismic surveys had been conducted for various purposes such as site investigation for the nuclear power plants and industrial complex, exploration for ground water, mineral resources and underground tunnel. The first reflection survey with CMP acquisition was attempted in 1978 by using a digital recording system. But most of on-land seismic surveys had employed the refraction method until 1980s. In 1990s, high resolution reflection and various borehole seismic surveys such as tomography, uphole, downhole, cross-hole methods have been attempted by universities and engineering companies. The applications of on-land seismic surveys have been enlarged for both academic and industrial purposes such as investigation of geologic structure of the fault and tidal flat area, construction of highway, railroad and dam, geothermal energy and mineral resource exploration, environmental assessment for waste disposal sites and archaeological investigations. In 2002, the first crustal seismic survey was carried out on the profile of 294km length across the whole peninsular. It is expected that the advanced technology and experience acquired through offshore seismic surveys, which have been conducted in continental shelf of Korea and foreign oil fields, will stimulate the more active on-land seismic explorations.

Study of Blast Ground Vibration & Noise Measurements In-situ and Effect Analysis for Numerical Analysis, Rational Blasting Design at an Eel Farm (양만장의 발파 진동소음 현장측정과 수치해석을 통한 영향검토 및 합리적인 발파설계 연구)

  • Lee Song;Kim Sung-Ku;Rhee Yong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.179-188
    • /
    • 2006
  • The vibration or/and noise generated by blast operations might cause not only structural damage to properties but mentally also to humans and animals. For that reason, maximum permitted vibration and noise levels are set by sensitivities of structures and they are used for the management of blast vibration. It is known that the fish lived in water are more sensitive to vibration than land animals, and thus the adverse impact of the blasting on fish farms should be very concerned. This study investigated the vibration and noise levels at a large eel farm located some 840 meters of the blasting site through the large real-scale experiments of blastings, prior to conducting the actual blasting. As a result, it was found that the noise met the requirement to be within maximum permitted level, while the ground vibration exceeded the permitted vibration. Accordingly, the impact of the excess vibration was investigated by an existing empirical method and verified by a new three dimensional numerical analysis. In this study, such an inspection process was briefly described, and a method was suggested for the examination of possible adverse effects from blasting on vibration-sensitive structures like the eel farm. The study also introduced a design method that controls the blast effects - ground vibration and noise.

Numerical Modeling of Coupled Thermo-hydro-mechanical Behavior of MX80 Bentonite Pellets (MX80 벤토나이트 펠렛의 열-수리-역학적 복합거동 모델링)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.446-461
    • /
    • 2020
  • Numerical simulations of CIEMAT column test in Spain are performed to investigate the coupled thermo-hydro-mechanical (THM) behavior of MX80 bentonite pellets using TOUGH2-FLAC3D. The heater power and injection pressure of water in the numerical simulations are identical to those in the laboratory test. To investigate the applicability of the thermo-hydraulic (TH) model used in TOUGH2 code to prediction of the coupled TH behavior, the simulation results are compared with the observations of temperature and relative humidity with time. The tendencies of the coupled behavior observed in the test are well represented by the numerical models and the simulator in terms of temperature and relative humidity evolutions. Moreover, the performance of the models for the reproduction and prediction of the coupled TH behavior is globally satisfactory compared with the observations. However, the calculated stress change is relatively small and slow due to the limitations of the simple elastic and swelling pressure model used in numerical simulations. It seems that the two models are insufficient to realistically reproduce the complex coupled THM behavior in the bentonite pellets.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Greenhouse Design for Subtropical Plants in Apartment Housing Complexes in Temperate Regions (온대지역 공동주택단지의 아열대 식물용 온실 설계)

  • Kim, Jai-Sik;Kim, Jeong-Moon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.6
    • /
    • pp.34-42
    • /
    • 2009
  • This study was executed to introduce a greenhouse style "Evergreen Park" to apartment complexes to target hands-on resident participation and application rather than a mere viewing of the plants as a way to provide convenient and profitable service to residents in a year-round center of usable outside space. The four key points can be summarized as follows: first, subtropical plants are evergreen broad-leaved trees, which maintain their green during all four seasons the leaves are thick and glossy. Greenhouses geared toward these subtropical trees-mainly broad-leaved evergreen species-are in planning to introduce these unique, elegant plants to temperate regions. Residentswill not only gain an education regarding these species but will be provided with the best quality evergreens at very reasonable maintenance costs. Second, subtropical plants greenhouses introduced in apartment complexes are suggested for structures connected via underground passage as well as free-standing structures so as to make use of geothermal heating and apply to reducing sunlighting. Third, as a way to provide (1) health & relaxation(evergreens, herb garden, water space), (2) community & education (plant flea market/plant hospital, plant-related lecture(exhibition), hands-on experience program), (3) a vine garden for year-round use such festivities as a Butterfly Festival, Aroma festival, Smile Oak Nuts, Candlelight Festival and Christmas Photo Site. Lastly, it has been suggested that the operation and maintenance of these greenhouses will be both by resident council operation management and by outsourcing company operation management.

A Study of Blasting Demolition by Scaled Model Test and PEC2D Analysis (축소모형실험 및 PFC2D해석에 따른 발파해체 거동분석)

  • 채희문;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.54-68
    • /
    • 2004
  • In this study, scaled model tests were performed on blasting demolition of reinforced concrete structures and the experimental results were analyzed in comparison with the results of numerical analysis. The tests were designed to induce a progressive collapse, and physical properties of the scaled model were determined using scale factors obtained ken dimension analysis. The scaled model structure was made of a mixture of plaster, sand and water at the ratio determined to yield the best scaled-down strength. Lead wire was used as a substitute for reinforcing bars. The scaled length was at the ratio of 1/10. Selecting the material and scaled factors was aimed at obtaining appropriately scaled-down strength. PFC2D (Particle Flow Code 2-Dimension) employing DEM (Distinct Element Method) was used for the numerical analysis. Blasting demolition of scaled 3-D plain concrete laymen structure was filmed and compared to results of numerical simulation. Despite the limits of 2-D simulation the resulting demolition behaviors were similar to each other. Based on the above experimental results in combination with bending test results of RC beam, numerical analysis was carried out to determine the blasting sequence and delay times. Scaled model test of RC structure resulted in remarkably similar collapse with the numerical results up to 900㎳ (mili-second).

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

The State of the Technology: Application of Cementitious Materials to Deep Repository Tunnels for Radioactive Waste Disposal (방사성폐기물의 심지층 처분터널에서의 시멘트 물질 적용에 관한 기술현황)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.373-387
    • /
    • 2009
  • Considering the current construction technology and research status of deep repository tunnels for radioactive waste disposal, it is inevitable to use cementitious materials in spite of serious concern about their long-term environmental stability. Thus, it is an emerging task to develop low pH cementitious materials. This study reviews the state of the technology on low pH cements developed in Sweden, Switzerland, France, and Japan as well as in Finland which is constructing a real deep repository site for high-level radioactive waste disposal. Considering the physical and chemical stability of bentonite which acts as a buffer material, a low pH cement limits to $pH{\leq}11$ and pozzolan-type admixtures are used to lower the pH of cement. To attain this pH requirement, silica fume, which is one of the most promising admixtures, should occupy at least 40 wt% of total dry materials in cement and the Ca/Si ratio should be maintained below 0.8 in cement. Additionally, selective super-plasticizer needs to be used because a high amount of water is demanded from the use of a large amount of silica fume.

A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer (심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가)

  • Jeon, Yoon-Soo;Lee, Seung-Rae;Kim, Min-Seop;Jeon, Jun-Seo;Kim, Min-Jun
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.439-455
    • /
    • 2019
  • A buffer is the major component of a high level radioactive waste repository. Due to their thermal conductivity and low permeability, bentonites have been considered as a key component of a buffer system in most countries. The deep geological condition generates ground water inflow and results in swelling pressure in the buffer and backfill. Investigation of swelling pressure of bentonite buffer is an important task for the safe disposal system. The swelling pressure that can be critical is affected by mechanical and hydro properties of the system. Therefore, in this study, a sensitivity analysis was conducted to examine the effect of hydro-mechanical (HM) behaviors in the MX-80 bentonite. Based on the results of the swelling pressure generation with HM model parameters, a coupled HM analysis of an unsaturated buffer and backfill in a deep geological repository was also carried out to investigate the major factor of the swelling pressure generation.