DOI QR코드

DOI QR Code

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage

암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석

  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 신중호 (한국지질자원연구원) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부)
  • Received : 2015.03.10
  • Accepted : 2015.04.21
  • Published : 2015.04.30

Abstract

The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

본 연구에서는 TOUGH2-FLAC3D 연계해석기법을 이용하여 암반공동에 고온의 열에너지를 30년간 저장하는 경우 주변 암반에 야기되는 열-수리-역학적 연계거동을 살펴보았다. 열에너지저장에 따른 암반의 거동 특성 및 환경 영향을 예측하고 이에 대한 제어기준을 수립하기 위한 기초 연구로서, 저장소 주변 암반에서 발생하는 열-수리 흐름과 역학적 거동의 상호작용에 대하여 검토하였다. 기본해석으로서 결정질 암반 내 원통형 공동에$350^{\circ}C$의 대용량 열에너지를 저장하는 경우를 모델링하였으며, 열에너지저장소의 단열성능은 고려하지 않았다. 암반 내 열전달의 주요 메카니즘은 암반의 전도에 의한 것으로 판단되며, 암반의 역학적 거동은 수리적 요소보다는 열적 요소에 지배적인 영향을 받는 것으로 나타났다. 암반과 지하수 가열에 따른 유효응력 재분포 양상과 열팽창으로 인한 암반 변위 및 지표 융기를 검토하였으며, 주변 암반에서의 전단파괴 위험도를 정량적인 수치를 통해 제시하였다. 암반 가열에 따른 열팽창으로 인하여 지표면에서 수 cm의 융기가 발생하였으며, 저장공동 상부에 인장응력이 크게 발달하면서 전단파괴의 위험도가 증가하는 것으로 나타났다.

Keywords

References

  1. Hoek, E., Carranza-Torres, C., Corkum, B., 2002, Hoek-Brown failure criterion-2002 edition, Proceeding of NARMSTAC Conference, Toronto, pp. 267-273.
  2. Itasca Consulting Group Inc., 2012, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) Version 5.0 (Minneapolis, MN).
  3. Jaeger, J.C., Cook, N.G.W, Zimmerman, R.W., 2007, Fundamentals of rock mechanicics, 4th edition, London: Chapman and Hall.
  4. Kim, H.M., Rutqvist, J., Ryu, D.W., Choi, B.H., Sunwoo, C., Song, W.K., 2012, Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance, Applied Energy, Vol. 92, pp. 653-667. https://doi.org/10.1016/j.apenergy.2011.07.013
  5. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2014, Development of technology of CO2 geological storage and securing green energy resources in deep geo-environment (Part III) GP2012-001-2014(3).
  6. Mualem, Y., 1976, A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, Water Resour. Res., Vol. 12, No. 3, pp. 513-522. https://doi.org/10.1029/WR012i003p00513
  7. Park, D., Kim, H.M., Ryu, D.W., Choi, B.H., Sunwoo, C., Han, K.C., 2013, The effect of aspect ratio on the thermal stratification and heat loss in rock caverns for underground thermal energy storage, International Journal of Rock Mechanics and Mining Sciences, Vol. 64, pp. 201-209. https://doi.org/10.1016/j.ijrmms.2013.09.004
  8. Park, J.W., Park, D., Ryu, D.W., Choi, B.H., Park, E.S., 2014, Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage, Engineering Geology, Vol. 181, pp. 142-156. https://doi.org/10.1016/j.enggeo.2014.07.006
  9. Pruess, K., Oldenburg, C., Moridis, G., 1999, TOUGH2 User's guid, Ver. 2.0., Lawrence Berkeley National Laboratory Report LBL-43134, Berkeley, CA, USA.
  10. Rutqvist, J., Oldenburg, C.M., 2008, Analysis of injectioninduced micro-earthquakes in a geothermal steam reservoir, In: Proceedings of the 42th U.S. Rock Mechanics Symposium, San Francisco, California, USA, June 29-July 2, 2008, American Rock Mechanics Association ARMA, Paper No. 151.
  11. Rutqvist, J., Tsang, C.F., 2003a, Analysis of thermalhydrologic-mechanical behavior near an emplacment drift at Yucca Mountain, Journal of Contaminant Hydrology, Vol. 62-63, pp. 637-652. https://doi.org/10.1016/S0169-7722(02)00184-5
  12. Rutqvist, J., Tsang, C.F., 2003b, TOUGH-FLAC: A numerical simulator for analysis of coupled thermal-hydrologicmechanical processes in fractured and porous geological media under multi-phase flow conditions, California, In: Proceedings of TOUGH Symposium 2003.
  13. Rutqvist, J, Y-S. Wu, C-F Tsang and G. Bodvarsson, 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechenics and Mining Sciences, Vol. 39, pp. 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  14. Shim, B.O., Lee, C., 2010, Status of underground thermal energy storage as shallow geothermal energy. Economic and Environmental Geology, Vol. 43, No. 2, pp. 197-205.
  15. Siegesmund, S., Durrast, H., 2011, Physical and mechanical properties of rocks, In: Stone in Architecture: Properties, Durability, Springer-Verlag, Berlin Heidelberg.
  16. SKANSKA, 1983, Swedish rock technique: Lyckebo seasonal energy storage plant, SKANSKA Technical Brochure.
  17. Tsang, C.F., Birkholzer, J., Rutqvist, J., 2008, A comparative review of hydrologic issues involved in geologic storage of $CO_2$ and injection disposal of liquid waste, Journal of Environmental Geology, Vol. 54, pp. 1723-1737. https://doi.org/10.1007/s00254-007-0949-6
  18. van Genuchten, M.Th., 1980, A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc., Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  19. Waples, D.W., Waples, J.S., 2004, A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks, Natural Resources Research, Vol. 13, No. 2, pp. 97-122. https://doi.org/10.1023/B:NARR.0000032647.41046.e7

Cited by

  1. Effects of Hydrological Condition on the Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage vol.25, pp.2, 2015, https://doi.org/10.7474/TUS.2015.25.2.168