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A Comprehensive Groundwater Modeling
using Multicomponent Multiphase Theory:
1. Development of a Multidimensional Finite Element Model

Joon Hyun Kim

Division of Environment and Biological Engineering, Kangwon National University

ABSTRACT

An integrated model is presented to describe underground flow and mass transport, using a
multicomponent multiphase approach. The comprehensive governing equation is derived considering
mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic
elementary volume. Compact and systemati notations of relevant variables and equations are
introduced to facilitate the inclusion of complex migration and transformation processes, and variable
spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element
code. The devolped code with dynamic array allocation, is sufficiently flexible to work across a wide
spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix
workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time
and storage requirements, the system equations are decoupled and solved using a banded global
matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical
oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of
upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The
instability and convergence criteria of the nonlinear problems are studied for the one-dimensional
analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional
composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a
companion paper of this issue for the specific groundwater flow and contamination problems.

Key word : integrated groundwater model, multidimensional finite element method, multicomponent multiphase system
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1. INTRODUCTION sequence was used(Celia et al, 1993). In this
study, a simple schematic control volume in Fig.
The derivation of the theory for immiscible 2 is constructed to derive mass and force
flow and mass transformation started with the balance equations in a infregrated model.
application of continuos partial differential
equations over the discontinuous domain, using

the traditional averaging concepts in continuum Y
mechanics(Bear, 1979;Bachmat and Bear, 1986; 11. 1
. . m Ow Species §
Hassanizadeh and Gray, 1979a, b) as shown in e 0 .
Fig. 1. To overcome the length scale problem in r 8:
a
the volume averaging concept, a hierachic H 8
é 5
n
5

Contamination Source (Ground Surface

Variahly Saturated Vadose Zone

Groundwater table Fig. 2. Schematic conrtol volume.

Lin and Gray(1971) presented one of the
carliest studies related to multiphase force
balance. They derived a steady state momentum
equation for laminar flow in capillary tube, in

/\f which head difference, capillary pressure, and
surface tension were included. The theoretical

& Size of REV ; s : ;
Repmsmmm Elementary Volume equations were wverified against experimental

tests of capillary tubes. Hassanizadeh and Gray

1. Idealized migration profile and REV. (19793, 1979b), Allen(1984), and Abriola(1984)
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have rigorously derived the modified Darcy's
velocity from the momentum equation. Kueper
and Frind(1988) examined the effects of density,
tension on interfacial

viscosity, surface

immiscible displacements when reviewing
immiscible fingering, based upon a force blance
of pressure, gravity force, viscous friction, and
interfacial surface tension. Gray and
Hassanizadeh(1991a, b, 1993) showed the
paradox, if the modified Darcy's velocity is
used in a wvariably saturated region, which
requires false negative water phase pressure in
capillary-saturation relations. To overcome the
problem,

they developed a multiphase

momentum equation including interfacial
dynamics based on conservation of mass,
momentum, and energy, and the second law of
thermodynamics. Application of their technique
required experimental data to ascertain the
constitutive coefficients. Beckie et al.(1993)
presented a mixed formulation of the continuity
and momentum euqations for simple saturated
groundwater flow, and performed large-scale
finite clement simulation using a multigrid,
accelerated domain decomposition technique.
Considering all the studies mentioned above,
one can solve the multiphase momentum
equation or use the modified Darcy's equation
to describe velocity profile in a multicomponent
multiphase problem.

A brief review of previous groundwater

modeling efforts is presented to provide
background and support with respect to:1) finite
difference models, 2) finite element models, 3)
front tracking models, 4) boundary element
models, 5) analytical solutions, and 6) vector
and parallel processing.

Kuepper and Frindk(l99la) developed a two-

dimensional finite difference model to solve the

wetting phase pressure and saturation, which
eliminated the need to specify small, fictitious
saturations of nonwetting fluid phase of the
advancing front. The model is verified against
an exact analytical solution, and a parallel-plate
laboratory experiment involving the infiltration
of TCE into a heterogencous sand pack
(Kuepper and Frind, 1988). Kuepper and Frind
(1991b) applied the model to a field problem
based on the laboratory measurements of
capillary-saturation and permeability curves of
samples. They asserted that the migration of a
nonwetting liquid was extremely sensitive to
subtle variations of capillary and fluid physical
properties. Sleep and Sykes(1993a) developed a
compositional model including several
numerical options, ranging from fully implicit
with first-order upstream weighting to implicit
in pressure, explicit in saturations and
third-order
weighting. The model was verified to the extent

concentrations with upsteam
possible with analytical solutions for simplified
cases of multiphase flow and contaminant
transport. The accuracy and efficiency of the
various numerical options in the model were

and Sykes(1993b)
effect of field

heterogeneities on the movement of organic

illustrated. Sleep

demonstrated the scale
compounds. The influnce of infiltrating wetting
fronts on gas phase transport of volatile organic
compounds was shown to be significant. The
long-term fate of a subsurface spill of a three-
component dense organic liquid was simulated.
Three-dimensional simulation of soil vacuum
the difficulty in
removing dissolved organic compounds from
the saturatede zone. Adenekan et al.(1993)
developed a compositional simulator for three-

extraction demonstrated

dimensional, nonisothermal, multicomponent
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The model's
features are that it can simulate the transport of

multiphase transport. distinct
sensible and latent heat energy, and that each
phase was allowed to completely disappear
from, or appear in any region of the domain.
Kim(1989) developed a

groundwater model to simulate a wide range

comprehensive

problems from unsaturated flow to composite
multiphase contaminant migration using a
multidimensional finite element method. This
paper is based in part upon the results of his
dissertation. Mendoza and Frind(1990a) used
standard Galerkin FEM technique and triangular
elements for dense organic vapor transport in
the unsaturated zone. Axisymmetric coordinates
were used to represent localized residual
saturation solvent sources, and the model was
compared to three-dimensional laboratory
experiment. Mendoza and Frind(1990b) showed
that mass transport were highly dependent upon
diffusion for
pressure and molecular weights in coarse sands
Wood and Calver(1990)

compared distributed mass matrix to lumped

compounds with high vapor
or gravels media.

one for the solutions of Richards equation, and
found no difference in run times and

convergence rate, but significant discharge
difference. Celia and Binning(1992) presented a
mass conservative numerical solution of water-
air phase system based on a modified Picard
linearization of the

governing equations,

coupled with a lumped finite element
approximation in space and dynamic time
control. Cordes and Kinzibach(1992) used head
gradients of adjacent elements to compute
discontinuous Darcy velocity fields using the
concept of flux-conserving boundaries. Miller
and Rabidearu(1993) proposed one-and two-

dimensional split-operator method in which the

reaction operator of sorption and desorbtion
were separated from the transport operator and
solved
method.

Several researchers have investigated front-

independently with Petrov-Galerkin

tracking algorithms, such as the FEulerian-
Lagrangian method. Yeh(1990) presented one-
and two-dimensional LE(Lagrangian-Eulerian)
method with automatic mesh adaptation for the
sharp front regions of solute transport equation.
Comparison of upstream FEM, LE, LEZOOM,
and exact solutions indicated that LE approach
was superior to UFE method. Schafer-Perini
and Wilson(1991) presented a dynamic front
two-dimensional

tracking algorithm for

groundwater flow to save storage and
computational expense. Ryan and Cohen(1991)
proposed a one-dimensional front-tracking
algorithm to determine the front of the invading
NAPL as a function of penetration time based
on four dimensionless functional groups in two-
phase simulations. Bentley and Pinder(1992)

developed several algorithms to overcome the

tracking error problems of Eulerian-Lagrangian

methods, such as the accuracy of the integration
and the particle velocity. They presented a
dynamically adjusted second-order Runge-Kutta
method, a Crank-Nicholsen method for source
terms, and a time step size based on the local
velocity. Gottardi and Venutelli(1992) presented
a moving finite element method for Richards
equation, in which grid points are moved along
with the Newman(1993)

presented a unified Eulerian-Lagrangian theory

wetting front.

for conservative solute transport in a random
velocity field where the spatial derivative of
velocity vector was a random function of the
sources and/or time derivative of head. Connell
and Bell(1993) presented a moving node finite
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element method(MFE) to solve the system of
partial differential equation of water and air
phase flow for oil shale waste dump. The
retentivity,

hydraulic conductivity, moisture

water vapor-air diffusivity, and intrinsic
permeability of air were estimated based upon
field measurements.

Stothoff and Pinder(1992) developed a
boundary integral formulation for flow of two
immiscible, incompressible phases. Boundary
integral meshes were placed along contours of
phase saturation, and the contours were updated
with time, based on phase fluxes. The model
was verified against an exact solution, and the
solution of finite element simulator for one-
dimensional radial two-phase flow.
Khanbilvardi et al.(1993) presented two
boundary integral methods. The first directly
Both

simulated unsaturated moisture flow using time

used Green's function. techniques
dependent fundamental solution of the governing
equation, and verified against the exact solution.
Cheng and Morohunfola(1993 a,b) developed a
boundary element algorithm for one- and two-
dimensional, pumping well problems in
multilayered leaky aquifer.

To verify the numerical models mentioned
above, the best choice is to derive the analytical
solutions. Since the 1960’s, many analytical
solutions have been developed for the infiltration
problems, such as the Richards equation:
(McWhorter, 1971, 1992;Noblac and Morel-
Seytox, 1972 ; Warrick et al., 1990;Ross, 1990;
Srivastava and Yeh, 1991 ; Warrick et al. 1991,
Kirkland et al., 1992;Parkin et al, 1992).
However, little improvement has been made for
the multiphase flow problems.

All the previously cited numerical techniques

can be computationally intensive. Ressearchers

have investigated techniques to improve
accuracy and reduce computation time. Pelka
and Peters(1986) proposed program techniques
to fully utilize vector and parallel computers,
requiring additional intrinsic vector functions
beyond the Fortran 77 standard, and more
memory. The barriers to vectorization were: (1)
and branch

conditional statements, (2)

sequential dependencies; (3) nonlinear and
indirect indexing; (4) subroutine calls within
loops and (5) recursive operations. Dougherty
(1991) showed tutorial examples of the random
walk, Poisson's equation, and modeled steady
state three-dimensional groundwater flow using
the parallel processor in a Connection Machine
(CM-2). A diagonally preconditioned conjugate
gradient (DPCG) solver was applied to practical
problem to show the performance of DPCG on
the CM-2. Tripathi and Yeh(1993) compared
run times of a program on scalar, RISC and
vector computers. RISC based scalar computers
such as IBM 6000/560 provided the best
performance-to-price ratio.

The objectives of this study are: 1) to develop
a comprehensive code to solve many different
groundwater flow and pollution problems with
the proper choice of parameters such as mass
fraction and saturation coefficients, 2) to search
optimal numerical techniques for handing the
very unstable properties of the nonliner partial
differential equations, and 3) to reduce the data

and parameter requirements of the code.
2. THEORETICAL BACKGROUND

Macroscopic mass balance equation is

expressed as follows for nonequilibrium

conditions:
i

ac . RO
—at—“+V(C‘aVa)=V(D&VC;t)+I'a+g‘a-~--(2.1)
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where, Di=D} ,+D; ) is disperisve

coefficient tensor, and I¢ is the interfacial mass
o

transfer rate for mass exchange by means of

dissolution, sorption, volatilization, ion
exchange, and diffusion.

The overall migration process of the four

phases depends upon the migration process of

each phase. Thus, total migration of species i is
msummation of equation (2.1) over all phases.
To include the effects of volumetric fraction,
density, and mass fraction of each phase,
equation (2.1) is multiplied by volumetric
fraction. The final form of multiphase mass
transport equation of species 1 is expressed as

follows:

3| e

=V (0,51 V (o wi )+ Of’, + 6,8’ (2.2)

0, (=U, |U=¢S,) =
fraction, S (U, | Uy=U ¢U)=6, | ¢) = saturation,

+V(0,pgwh V)

where, volumetric

U, = volume of the o phase, U = volume of all

PoM ;| U )=
density of o phase, M = mass of the phase,

phases, ¢ = aquifer porosity,

wi, (=M’ | M) = mass fraction of species, M}, =
mass of species in the o phase.

Including the interfacial momentum exchange,
a macroscopic momentum equation is derived
through the extension of the density and
pressure of each species to all species in each
phase:

.y

DV
2 P alph

i

]

—V(Pl +Ppv agy)

where, ns the is total number of species in the

o phase, R o 1s the modefied momentum

exchange in the form of an isotropic Stokes’
drag force (Allen, 1984), which denotes the
resistance to motion of the i component in o
fluid phase by a slowly moving or immovable
component in soil phase, acting in a direction
opposite to the flow of the fluid phase.

It is possible to neglect the inertia term of the
momentum equation due to the slow velocity of
fluid phase.
effect of the components in each phase
(Y Py =Py, Pl = P,YRi =Ry, and

the viscous effects, the velocity of the o phase

After neglecting the composite

in a deformable porous media becomes:

% Ko v )+ V.
=— + +Vs
¢” 14 p()gy

o
o

a‘Pag")JfVS ................ (2.4)

where, Kk is the intrinsic permeability tensor,
k ,is the relative permeability of the o phase, g
is the downward vector of gravity force.

If there is no change of total stress of
overburden load, the compressibility of the
porosity by pressure head is defined as

#5=(09) | ©hp), then solid transport equation is

expressed in terms of compressible porosity,
phase head, and solid velocity.

3 oh 5
S (0, _at_ﬂ) T 7 AR @2.5)
[

The compressibility ¢5 is obtained
experimentally from the constitutive equation.

The fluid pressure kg is computed from the

whole multicomponent multiphase system. The
velocity of the solid phase and the time rate
change of porosity are computed from equation
(2.5). For an elastic soil matrix, the parameter ¢g
is constant; for a nonelastic soil, it is dependent
upon pressure and properties of soil matrix, and
the system becomes highly nonlinear. For
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contaminant migration problems, the elastic

deformation assumption is usually accepted. g

is incorporated into the fluid equation by
specific storativity as follows:

where, ag=dp,) | (pPhp) is the compressibil-
ity of the o phase by the § pressure head, and
S o8 is the specific storativity of the porous

matrix and fluid. og and g always have

negative values.

By assuming isothermal conditions and

neglecting the density change due to

concentration, the storage capacity of the

system can be expressed as fOllOWS’

wis, (¢Po) ngd(PawP ¢

Separating the solid phase from the time

derivative, including the Darcy and solid
velocity, and storage capacity of porous media,
the integrated transpor equation is expressed as

follows:
3

)y

a=1

+ o1 - Pp, wi
o

3 ) oh, . .3, owl
i [ [
ﬁz=1(pﬂwﬁgﬁgp“) 5 Py HS T

2 A Py . ,
> V[puwaxu[w; ,,—f] AACR AR
a= w
— 4 . .
— V(- Pp,wiV,)+ z [ea(lla gl e (28)
a=1

3. MULTIDIMENSIONAL FINITE ELE-
MENT MODEL

Applying the integrated element matrices,

element-wise parameters, and Green's theorem,
the weighted residual form of the governing

equation is discretized as follows:

nel  nn

S80S ew, ) [zwﬂwmng

e=1j=1a=

+(¢paw’a)
nd nd )

+ 2 Z [EDM,jd.i,j](pawlaK")hﬂLj+(MapaD(Z)JWIa,}
id=1jd =1

+[EM; ]] ((1 Ppswi); 11

w

=S3r-my, ][p,,w;,Ka”—“]
a=1j=1 P j

+[EM; ;J@S My +85)p)
+lebpa L H{Vh +::—a]]nd3

+J.wib¢SaD(;V(paw€z)'_ﬁm]]] ...................... (3.1)

where, nel is total number of elements, nd is di-
mension of the problem, nn is total number of
nodes in each element, na is total number of

phases excluding soil phase.

Boundary loads of advective and dispersive

mass flux can be expressed as follows:
IW Py a[Vh +%7] ndB :_Iwiqimth“" (3-2)

[ 88 DiV(pwi,) - #dB =~[w,qi, 4dB - (3.3)
where, gl , is outward normal advective flux,

and g1, is outward normal dispersive flux.

The boundary flux is integrated as follows us-
ing multidimensional basis functions(Kim, 1989)

nb
fi(xd,i'_'jwiqia,ddB:bzg <WI:NJ~ >qia,d,ib ............ (34)
ib=1
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where, ib is boundary nodal number, nb is total

number of boundary nodes, and f‘;xd’i is the

dispersive boundary load.
4. STABILITY CRITERIA

The system of equations is very dependent
Careful

selection of the step size for space and time,

upon the component equations.
and proper initial conditions, are required to
reduce the instability problems related to
nonlinearities(Abriola and Rathfelder, 1993). To
overcome the instability problems, it is
necessary to use variable time and spatial step
sizes(Cooley, 1983). The variable time step can
be determined from the truncation error. The
variable spatial step size requires the algorithm
to find a shap advancing front. The gradient of
the concentration can indicate the presence of a
sharp advancing front. Near this location, a
smaller step size is required.

In this study, upstream weighting, variable
time step, advanced iteration tehniques, element-
wise evaluation of parameters, and mass
lumping are used to avoid stability problems.

The methodology developed by Karplus(1958)
was applied to insure a stable solution. To
simple stability

provide a explanation, a

analysis of a one-dimensional problem is
implemented shown in Fig. 3. Two-and three-
dimensional cases and different basis functions
can also be analyzed through the expansion of

the “following finite element analogue:

1
T Crt = Clhy) +4(Cr = ) + (€t = CLy)]

i+l
4Gy~ Gy + (1~ Gy Cioy)')
2Ax i+l i-1. i+17 i1

D
= ;{[Q(Cm -2C; +C;_ !

+(1-&XC;

i+l

-2C; + Ci—l)n] .............................. (4_1)

After rearranging each term of the above
equation in the form of C*1-CP, the
summation of all the coefficients should be less
than O to satisfy the stability criteria.

DA _Cr L e, (4.2)

A2 P,  3(1-g
Where, C, =V /(Ax/A t)is the Courant numb-
er, and P,=V/(D/Ax) is the local Peclet

number.

Because the system can be interpreted as the
moving coordinate by the velocity component
of the total derivative, the migration distance by
convective flux should be within the already
defined analogue, Therefore, V ( (Ax/A t),
which is same as C, { 1.

The above FEM algorithm is very similar to
the finite difference algorithm except for the
time derivative, which is evaluated at three
different spatial points with
4, and 1.

technique to the generalized finite difference

the weighting
factors 1, Applying the above
analogue, the stability condition of generalized
FDM becomes:
pa_C (1
&2 Pe 2Al-9)
The numerical analogue of one-dimensional
FEM and FDM is shown in Fig. 3.

................................... (4.3)

(o :’E -O
o O -O

Finite Diffcrence Method

Finite Element Method
Time

Space

Fig. 3. One dimensional analogs of FEM and FDM.
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5. PARAMETER STUDIES

The permeability-saturation-pressure functions
of the three phases have been derived from the
parametric functions between the capillary
pressure and saturation using the two-phase
system measurments for calibration(e.g. Leverett
and Lewis, 1941; Stone et al., 1970, 1973; Aziz
and Settari; 1979; Brooks and Corey, 1964; van
Genuchien, 1980). Others have developed an
approach which requires only the measured
pressure-saturation relations to calibrate relative
permeability-saturation-pressure relationships for
three-phases(Corey et al., 1956; Parker et al.,e
1987; Parker and Lenhard, 1987;Lenhard et al,
1988a,b,c, 1989, 1991).

In the derivation of macroscopic averaged
transport equation in this study, the character of
dispersive flux appears as the difference
between the microscopic species phase velocity.
The dispersion coefficient has the directional
property of velocity of each phase and can be
different

traditional formulation of dispersion coefficient

for each component species. The

can be expanded for this species dependency as
follows(Kim, 1989;Abriolaet al., 1993).

=2
V. vV
i i 7 i i o i e
Dy =00 Vel 8, (0] g+ G2 +D) oo (51)
[+

where, Diij is the dipersion coefficient tensor

124
of specics in o phase(m/day), of , and of , are
the transverse and longitudinal dispersivities of
species i in ¢ phase(m), | Va| is the absolute

velocity, ij is the index for direction, §;; is the

ij
Kronecker delta (§;=1 when i=j, ;=0
when i # j), and D} , is the molecular dif-
fusivity.

Based upon the experimental studies which
conducted using relatively high flow velocities

(e.g., Vi ) 3.5m/d, Powers et al, 1994), the
velocities are more closely associated with
forced gradient flow, such as that occurring
during a pump and treat remediation effort.
Under

demonstrate the

such conditions, the rtesults clearly

invalidity of the local
equilibrium assumption for NAPL dissolution in
porous media. Observed values of the dissolution
rate constant ranged from about 0.1d" to several
hundred d” in the most recent studies(Powers et
al., 1994; Imhoff et al., 1994). The specific value
depends on strongly on the flow rate and NAPL-
pore geometry. In the framework of the present
model, the single-component NAPL dissolution
rate expression takes the following form:

owg

ot

where k5, is the NAPL dissolution rate constant

=kGw(Wis — W£) ................................... (5_2)

[d'], Wg is the mass fraction of the organic
species at the aqueous solubility limit.

The equilibrium volatility of a NAPL is
governed by its vapor pressure. The present
model uses the following dimensionless vapor
pressure term:

wo, = PoMe

PRT

where, p° is the vapor pressure of the organic

................................................ (5.3)

compound [pressure], M° is the molecular

weight of the organic compound [M], p, is the

density of air [M,/,], R is the gas constant [e.
g., J/mol/K], T is the absolute temperature [K].

Raoult's Law applies and the equilibrium
mass fraction of each organic species in the
vapor phase is assumed to be proportional to its
mass fraction in the mixture(Corapcioglhu and
Baehr, 1987).

iPoMa ............................................

P M 5.4



98 Joon Hyun Kim

For dilute solutions of an organic species, the
equilibrium partitioning of volatile organic
chemicals between air and water is descrived by
the Henry's Law constant:

where HS, is the dimensionless Henry's Law
constant.

For sparingly soluble organic species, the
Heary's Law constant is insensitive to
concentration, even near the solubility limit of
the species. Henry's Law constant data are
available for many compounds(Schwarzenbach
et al.,, 1993), and, like vapor pressures, display
a wide range of volatility among compounds of
environmental interest. Dimensionless values
range from about 10° to 10°, for PAHs, from
about 0.04 to 3, for chlorinated solvents, and
from about 1 to 300 for aliphatic hydrocarbons.

The multiphase mass balance equation is
: follows to

transformed as include the

nonequilibrium sorption:

3| oPS PpS)
3

a
21— 0 D we)
3 :I + 5 Q- Ppswe + S, p,, WS

a=1

o

3 b d
2 [_V(M oPo¥ gcva) + V(waDl&V(paw%))]
4

=1
+ ) Mg(lgl +g‘&)] .................................... (5_6)

o

where, p,,; is the density of the immobile water
phase, wg; is the mass fraction of the organic

species in the immobile water phase.

Most intrasorbent diffusion models describe a
series of two mass transfer resistances: 1)
interphase transfer between the advection-
dominated phase and the diffusion-dominated
phase, and 2) intraphase transport within the
diffusion-dominated phase. The sorbent's
capacity for the solute is still dictated by the

equilibrium distribution coefficient. A first-order

approximation lumps the series of two rate
parameters into a single interphase mass transfer
rate constant. In the context of the current
model, nonequilibrium sorption is an interphase
transfer problem that is written as

5
2.(98d51= %((1 = D)pswe + 45, Pwiw,
a=4

= k,?,w,-(l)wwv?» - PwiW»‘Ci ............................. (5.7)
where, k2. is the mass transfer rate constant
@M.

Assuming the equilibrium at the immobile

water and solid interface(Wg, = Wo,HY, ), dilute

solutions(density of mobile and immobile water
phase is constant), and homogeneous porous

media(Sy, S,,;, ¢, H?,, are constant), sorption
process is expressed as follows:
owe: ko
o = (D WG — P WO, Yo (5.8)
wi at m‘WlRl wi ' wi
where, S,; is the saturation of the immobile

water phase (i.e., the fraction of the void space
that is immobile water), and R; is the internal

retardation factor.
6. CONCLUSIONS

In this study, the technique of the integrated
modeling has been derived from the mass and
force balances in a multicomponent multiphase
system. The developed model encompasses the
migration processes of convection, dispersion,
interfacial transfer, and

dynamic mass

biochemical generation, and the forces of

pressure, gravity, interfacial friction, and
interfacial momentum transfer.

A comprehensive finite element model was
developed to solve the nonlinear transport and
constitutive equations of the immiscible fluid

flow using multidimensional bilinear elements.
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Parameter notations were improved for the fluid

conductivity tensor, storage coefficient,
dispersion and partition coefficients to facilitate
coding. Due to the complexity of the governing
equation developed in this study, more general
and stable algorithms was provided based upon
some of the previous works. The techniques
used in the code includes : 1) multidimensional
basis and weighting functions, 2) element-wise
evaluation of parameters, 3) modified Picard
iteration, 4) decoupling of the governing
equations, 5) multidimensional evaluation of
k and 6)

expression of variables with respect to the

boundary conditions, systematic
dimension, species, phase, spatial direction and
nodal point.

Even though it was difficult to thoroughly
optimize the code for vector processing due to
the severe nonlinearities and the recursive
relations among process, the vectorization gave
excellent results. the computation time after
vectorization was only one third of the time
required for scalar processing. The following
programming techniques were used to facilitate
vectorization.

1. The dimension of all arrays was defined in
descending order(A(np, ne, na), where, np ) ne

) na).

2. About 80% of the computation time was
spent in the evaluation of the element matrices.
Therefore, the element matrices were evaluated
over the whole domain, not over the each
element, and assembled later. this facilitates
vectorization, but increases the storage
requirements.

3. In the case of multiple DO-loops, the inner-
most DO-loop was for the largest array.

4. The

outside of the DO-loops by using redundant

recursive variables were evaluated

variables.
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