• Title/Summary/Keyword: Underground power transmission system

Search Result 114, Processing Time 0.03 seconds

Analysis on System Effects of SUS Tube in Optical Fiber Composite Power Cable Systems Using EMTP (EMTP를 이용한 광 복합 지중송전케이블 광 유니트 금속관의 시스템 영향분석)

  • Jung, Chae-Kyun;Jang, Tai-In;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1180-1185
    • /
    • 2014
  • This paper describes the effects on SUS tube of power optical fiber composite cable on underground transmission lines. The effects on grounding, air gap between SUS tube and metal sheath, contact resistance between outer semi-conducting layer and metal sheath and grounding of SUS tube application or not are variously analysed using EMTP in normal operating condition as well as single line to ground fault. From these results, in this paper, the scheme for protecting the electrically abnormal phenomena will be established on power-optical fiber composite cable of underground transmission lines. This paper can contribute to specification of grounding reference of SUS tube of optical fiber composite power cable system.

Surveillance System For Underground Power Transmission Lines (초고압 지중선로 감시시스템 연구)

  • Hahn, K.M.;Lee, K.C.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.618-620
    • /
    • 1993
  • This system using optical fiber provides various information about underground tunnel and power transmission lines-atmospheric temperature, humidity, oil pressure, flammable gas, cable behavior, and so on. To transmit various data and to keep reliability, optical MUXs are adopted. User can easily operate monitoring software by using GUI.

  • PDF

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Jung, Yeon-Ha;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.628-634
    • /
    • 2014
  • This paper investigates the transient characteristics of grounding systems used in under-ground distribution power cables. Recently, two kinds of grounding system are used for underground distribution cables in Korea. The first one is conventional multi-point grounding system, the other is newly proposed non-bundled common grounding system. The non-bundled common grounding system has an advantage the decreasing the power loss due to decrease of the shield circulation current. In this paper, the lightning overvoltage induced in neutral wire (in case of non-bundled common grounding system, overvoltage between opened neural wires and grounding in each phase) of these two kinds of grounding systems are estimated and compared by field tests and EMTP simulations. The EMTP simulation methods are firstly verified by comparison of measurement and simulation. Finally, the insulation level against lightning is expected by EMTP simulation results using verified model.

A STUDY OF INNER COOLING CABLE SYSTEM FOR UNDERGROUND POWER TRANSMISSION LINE (지중 송선선로의 대용량화를 위한 내부냉각 케이블 시스템의 검토)

  • Choi, Chang-Soo;Lee, Kab-Joong;Chugn, Moo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.615-617
    • /
    • 1993
  • Recently, the demand of electric power has increased remarkably in densely populated cities in Korea. Various method to increase the power transmission capability of underground cable lines has been investigated. In this paper presents the study of inner cool ins cable system for larger power transmission capability. It is also shown that designed inner cooling cable and their system proves more economic than conventional type cables.

  • PDF

A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference (지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구)

  • Park, Jae-Hong;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.

Analysis of Lightning Overvoltage on the Underground Power Cable at the Striking of Lightning Surge to the Combined Transmission Line (혼합송전선로에 뇌서지침입시 지중송전선로에서의 뇌과전압 해석)

  • Kim, Nam-Yeol;Lee, Jong-Beom;Jang, Seong-Hwan;Gang, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.502-509
    • /
    • 2002
  • In the analysis of lightning surges, transmission towers are usually simulated by ATPDraw. The modeling of transmission towers is an essential part of the traveling wave analysis of lightning surges in transmission lines. The tower model is applied to the 154kV transmission tower of which surge performance characteristics are measured Tower surge response is computed using nonuniform, single-phase line models for both transmission tower and ground wire. The overvoltage will effect to the underground transmission line. The underground cable is combined by duct and trefoil type, and the each arrester is placed on the leading-in tube and outgoing tube. This paper analyzed the effect of lightning overvoltage on the underground cable system.

A Study on SVL Transient Characteristics by Switching Overvoltage at Single Point Bonding Section in Underground Transmission Cables (개폐과전압 발생시 지중송전선로 편단접지 구간에서 SVL에 미치는 과도특성에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.764-769
    • /
    • 2014
  • This paper describes sheath voltage limiter(SVL) transient characteristics by switching overvoltage considering single point bonding in underground transmission cables. The crossbonding system is generally used for grounding methods of underground transmission system. However, the single point bonding system is used in selective area which is difficult to consist of crossbonding major section. The sheath voltage limiters are connected between joints in the single point bonding. Specially, the high overvoltage might be generated in that section as well as the aging of sheath voltage limiter might be progressed by various electrical stress including lightning overvoltage, switching overvoltage and power frequency overvoltage. Therefore, in this paper, the switching overvoltage characteristics in underground cables are firstly analysed using EMTP simulation. Then, the switching overvoltage of sheath voltage limiter is also studied in single point bonding. Finally, the reduction method of sheath voltage limiter switching overvoltage is proposed by various simulation studies including circuit breaker operating order.

Fault Location Using Neuro-Fuzzy for the Line-to-Ground Fault in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전선로에서의 1선지락 고장시 고장점 추정)

  • 김경호;이종범;정영호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.602-609
    • /
    • 2003
  • This paper describes the fault location calculation using neuro-fuzzy systems in combined transmission lines with underground power cables. Neuro-fuzzy systems used in this paper are composed of two parts for fault section and fault location. First, neuro-fuzzy system discriminates the fault section between overhead and underground with normalized detail coefficient obtained by wavelet transform. Normalized detail coefficients of voltage and current in half cycle information are used for the inputs of neuro-fuzzy system. As the result of neuro-fuzzy system for fault section, impedance of selected fault section is calculated and it is used as the inputs of the neuro-fuzzy systems for fault location. Neuro-fuzzy systems for fault location also consist of two parts. One calculates the fault location of overhead, and the other does for underground. Fault section is completely classified and neuro-fuzzy system for fault location calculates the distance from the relaying point. Neuro-fuzzy systems proposed in this paper shows the excellent results of fault section and fault location.

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

Characteristic Analysis of Power Optical Fiber Composite Cable System on Underground Transmission Lines (지중송전선로 광 복합 전력케이블 시스템 특성분석)

  • Jung, Chae-Kyun;Park, Hung-Sok;Jang, Tai-In;Kang, Ji-Won;Kim, Jong-Chae;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.531-532
    • /
    • 2011
  • This paper describes the characteristics analysis of power-optical fiber composite cable on underground transmission lines. The effects on grounding, air gap and contact resistance are variously analysed using EMTP in normal operating condition. From these results, in this paper, the scheme for protecting the electrically abnormal phenomena will be established on power-optical fiber composite cable of underground transmission lines.

  • PDF