• Title/Summary/Keyword: Underground power cable systems

Search Result 82, Processing Time 0.022 seconds

Surge Analysis Considering Variation of Line Configuration Factor in Combined Distribution Systems with Power Cables (혼합배전계통 선로구성요소 변화를 고려한 선로 서지해석)

  • Kim, Byong-Sook;Lee, Jang-Geun;Han, Byoung-Sung;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.472-480
    • /
    • 2007
  • This paper analyzes overvoltage on testing line for various parameter effect examination. Model systems consist of overhead line and underground cable. The model considered actual characteristic data of distribution lines. and will be constructed at testing yard. The simulations were performed under various line configuration such as cable kinds, cable length, lightning wave, lightning wave time, transformer and branch circuits. The simulation models are established by EMTP/ATPDraw and Line Constants are calculated by ATP_LCC. When lightning surge strikes on conductor of overhead line, EMTP/ATPDraw calculates overvoltage in many cases. Simulation results will be compared with real testing results at testing yard. The compared results will be used to establish protection methods in actual underground distribution systems.

Development of Fault Location Method Using SWT and Travelling Wave on Underground Power Cable Systems (SWT와 진행파를 이용한 지중송전계통 고장점 추정 기법 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.184-190
    • /
    • 2008
  • The fault location algorithm based on stationary wavelet transform was developed to locate the fault point more accurately. The stationary wavelet transform(SWT) was introduced instead of conventional discrete wavelet transform(DWT) because SWT has redundancy properties which is more useful in noise signal processing. In previous paper, noise cancellation technique based on the correlation of wavelet coefficients at multi-scales was introduced, and the efficiency was also proved in full. In this paper, fault section discrimination and fault location algorithm using noise cancellation technique were tested by ATP simulation on real power cable systems. From these results, the fault can be located even in very difficult and complicated situations such as different inception angle and fault resistance.

Analysis of transient state between Korea and Japan in Underground Transmission Cable System (국내외 지중송전시스템의 과도상태 해석)

  • Kang, J.W.;Jang, T.I.;Hong, D.S.;Lee, D.I.;Jung, C.K.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.462-464
    • /
    • 2005
  • This paper analyses the transient phenomena against single line to ground fault and lightning surge between Korea and Japan on underground power cable systems. For analysis, find proper earthing resistance of neutral grounding system adopted in Japan. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

  • PDF

Analysis of induced voltage of CCPU with unbalanced current from Distribution Line on Underground Transmission Cable System (지중송전계통에서 배전선 불평형전류 유입에 따른 영향 검토)

  • Kang, J.W.;Jang, T.I.;Hong, D.S.;Jung, C.K.;Yoon, D.S.;Yoon, J.K.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.459-461
    • /
    • 2005
  • This paper analyses the induced voltage characteristic of CCPU with unbalanced current from distribution line on underground transmission power cable systems. In switching surge strokes, in order to obtain the data of induced voltage/current on CCPU, the actual proof test carried out. This paper is expected to contribute the establishment of proper protection methods of CCPU against the unbalanced current from distribution line on underground transmission power cable systems.

  • PDF

Surveillance System For Extra High Voltage Cable (초고압 CABLE 감시시스템 연구)

  • Hahn, K.M.;Lee, K.C.;Jeon, S.I.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.789-793
    • /
    • 1992
  • For improving the power supply reliability and minimizing maintenance work of E.H.V. underground transmission line, new surveillance systems are strongly desired for use in the field of electric power transmission. For underground installation, high system reliability is required because E.H.V. cables, if an accident happen, can have a serious impact on social activities and human life. In answer to this requirement, applications of optical fiber transmission system have been widely developed in a variety of field. The main function of this system are cable fault location, oil leak detection, and surveillance of the cable circuit and tunnel condition.

  • PDF

Determination of Proto Type for 345kV CV Cable Accessories (345kV CV 케이블 접속함의 Proto Type 선정)

  • Lee, S.K.;Kim, I.T.;Son, S.H.;Choi, S.G.;Huh, G.D.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1629-1631
    • /
    • 1998
  • Crosslinked polyethylene (XLPE) insulated cables are now widely used all over the world for extra-high voltage underground transmission systems. Prefabricated type (compression type) joint has developed in order to shorten the assembly time and lower the possibility of contamination at site by many companies in the world. For outdoor termination, to control the electric field distribution as uniform as possible, especially for the use of extra-high voltage system. much of products are adopting the oil-impregnated condensor cone type instead of electric field control element which uses the permitivity of it only (not capacitance). For Gas-immersed termination, dimension of outer insulation bushing was determined by IEC Publication 859. The highest voltage of underground power cable system is 345kV now, in Korea. We have much of experiences of the development of prefabricated type accessories for CV cable systems (154kV, 161kV, 230kV level). So it was possible to inspect the proto type of accessories for 345kV CV cable system and seems that the need time for the development of products is reduced.

  • PDF

Development of Fault Detection and Noise Cancellation Algorithm Using Wavelet Transform on Underground Power Cable Systems (웨이블렛을 이용한 지중송전계통 고장검출 및 노이즈 제거 알고리즘 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1191-1198
    • /
    • 2007
  • In this paper, the fault detection and noise cancellation algorithm based on wavelet transform was developed to locate the fault more accurately. Specially, noise cancellation algorithm was based on the correlation of wavelet coefficients at multi-scales. Fault detection, classification and location algorithm were tested by EMTP simulation on real power cable system. From these results, the faults can be detected and located even in very difficult situations, such as at different inception angle and fault resistance.

Conceptual Design of HTS Power Gable (고온초전도 전력케이블의 기념설계)

  • Cho, J.W.;Seong, K.S.;Kim, H.J.;Lee, E.Y.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1626-1628
    • /
    • 1998
  • In reccent years the large capacity underground power transmission systems have been required gradually with the increasing demand of electric power, the increasing electric power system and the environmental limitations of an overhead transmission line in the city. But it is difficult to get the space for the underground power transmission lines because of complicated distributions of underground public facilities. But as the superconducting power cables have the large power transmission capacity, the high power transmission density, and low loss characteristics in comparison with a conventional cable, the necessity for their development are increasing. In this paper, the results of the conceptual design of HTS power cable is described.

  • PDF

Development and Application of EMTP based Simulator for Analysis of Underground Power Cable Systems (EMTP 기반 지중송전계통 해석용 시뮬레이터 개발 및 응용)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Lee, Won-Kyo;Lee, Dong-Il;Hwang, Kap-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.320-321
    • /
    • 2008
  • In this paper, new simulator based on EMTP was introduced for simulation of underground power cable system. The newly developed simulator was named as Power Cable Simulator(PCS), and it can simulate the various normal conditions including sheath circulating current. It is also easier to use than conventional software, such as EMTP and CabSim, because all the data for calculating the cable parameters are stored in a database(DB) within a PCS. In addition, the accuracy of PCS is also proved through the comparison between the calculation and simulation of sheath current.

  • PDF

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.