• Title/Summary/Keyword: Underground flexible pipe

Search Result 24, Processing Time 0.03 seconds

Prediction of Short-term Behavior of Buried Polyethylene Pipe (지중매설 폴리에틸렌 관의 단기거동 예측)

  • Park, Joonseok;Lee, Young-Geun;Kim, Sunhee;Park, Jung-Hwan;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.907-914
    • /
    • 2012
  • Flexible pipes take advantage of their ability to move, or deflect, under loads without structural damage. Common types of flexible pipes are manufactured from polyethylene (PE), polyvinyl chloride (PVC), steel, glass fiber reinforced thermosetting polymer plastic (GFRP), and aluminum. In this paper, we present the result of an investigation pertaining to the short-term behavior of buried polyethylene pipe. The mechanical properties of the polyethylene pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, vertical ring deflection is measured by the laboratory model test and the finite element analysis (FEA) is also conducted to simulate the short-term behavior of polyethylene pipe buried underground. Based on results from soil-pipe interaction finite element analyses of polyethylene pipe is used to predict the vertical ring deflection and maximum bending strain of polyethylene pipe.

Behavior of Underground Flexible Pipe According to Ground Characteristics (지반특성에 따른 지중 연성관의 거동특성)

  • Chang, Yongchai;Kim, Yonghyu;Lee, Seungeun;Park, Kichul;No, Jinsuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.41-48
    • /
    • 2009
  • A flexible pipe was buried 10cm below the ground formed with standard sand to observe changes in the shape of the pipe according to the behavior of ground at each relative density. Changes in the shape of the pipe in each ground were observed to examine the behavior of the pipe under the state of reinforced ground after installing geogrid under the pipe. Ground reinforced using geogrid formed tensile force on the reinforcement material with increase in the vertical load and showed reduction in settlement under identical vertical load with existence of reinforcement. Distributions of ground deformation of 100% relative density and 70% relative density had clear difference. Reinforced ground with 70% density converged to the ground reaction of final settlement of non-reinforced ground with 100% density at final settlement of 100 mm. Because the shape of lower part strain of the buried pipe is similar to that of un-reinforced ground with relative density of 100%, reinforcement effect by geogrid in soft ground can be anticipated.

  • PDF

A Study on the Behavior of Buried Flexible Pipes with Soil Condition (지반조건에 따른 지중매설 연성관의 거동에 관한 연구)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In general, pipes buried underground can be classified into either rigid or flexible pipe. Glass fiber reinforced thermosetting polymer plastic (GFRP) pipe can be considered as one of typical flexible pipes for which the soil-pipe structure interaction must be taked into account in the design. In this paper, we present the result of an investigation pertaining to the short-term and long-term behavior of buried GFRP pipe. The mechanical properties of the GFRP pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, Ring deflection is measured by the field tests and the finite element analysis. Also, the extrapolation using these techniques typically extends the trend from data gathered over a period of approximately 5,232 hours, to a prediction of the property at 50 years, which is the typical maximum extrapolation time. Therefore, it was investigated that the long-term ring deflection of GFRP pipe estimated by methods for Monod-type.

Deformation Behavior of Underground Pipe with Controlled Low Strength Materials with Marine Dredged Soil (해양준설토 CLSM을 이용한 지하매설관 변형특성)

  • Lee, Kwan-Ho;Kim, Ju-Deuk;Hyun, Seong-Cheol;Song, Yong-Seon;Lee, Byung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.129-137
    • /
    • 2007
  • It is very urgent to research the proper recycling method of marine dredged soil as construction material for environmental conservation. Couple of developed countries have been lots of related researches on recycling of marine dredged soil for marine environmental conservation. This is highly imperative in our country. A small-scaled model test for underground pipe has been conducted on the use of controlled low strength materials with marine dredged soil. The flexible pipe, which is called PVC, was used. Four different testing materials, such as natural sand, insitu-soil, sand-CLSM with marine dredged soil and insitu-soil CLSM with marine dredged soil, were used. The vertical and lateral displacement of pipe with CLSM is one tenth of common granular materials. Also, the use of CSLM showed lower lateral and vertical pressure than that of common granular materials. The main reason is the effect of cement hardening of CLSM. This could increase of the stiffness of pipe with backfill materials. In this study, the data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM and reduce the deformation and earth pressure on flexible pipe.

Behavior of Underground Flexible Pipes Subject to Vehicle Load (차량하중을 받는 지중연성관의 거동특성)

  • 이대수;상현규;김경열
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are compared using traditional formula, FEM analysis and model soil box test. The results show that theoretical values are more conservative in strain in comparison with model soil box test and FEM analysis. Considering the strain criteria - maximum 3.5%, flexible pipes can be buried at the depth of 40cm without additional soil improvement. From the result of this study, deformation formula compatible with the field condition was proposed.

Behavior of Underground Flexible Pipes Subject to Vehicle Load (ll)-Based on Field Tests- (차량하중을 받는 지중연성관의 거동특성 (ll)-실증실험을 중심으로-)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.49-58
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various installation depth are compared using traditional formula, FEM analysis, model soil box test and field test. from the findings of various analyses, considering the strain criteria-maximum 3.5%, it is suggested that flexible pipes can be buried at the depth of 80cm without additional soil improvement.

Study for Rigid and Flexible Pipe Interaction at the Crossing Point of Underground Pipeline Network (지하 매설 교차 관망 내 강.연성관의 상호작용에 관한 연구)

  • Kim, Mi-Seung;Won, Jong-Hwa;Kim, Moon-Kyum;Kim, Jeong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • The result of this research explains an interactive behavior of buried steel pipe located below hume pipe using concept of effective depth and effective length against their intersection angle and burial distance. The cover depth of upper rigid (hume) pipe is 1.0m and depth range of flexible (steel) pipe is 0.5m to 5m from beneath bottom of hume pipe. And one more variable is their intersection angle in this study, it was considered from $0^{\circ}$ to $90^{\circ}$. From the results of this study, the effective depth is proportionally increasing with its intersection angle and decreasing with distance increment between two pipes. Finally, the relationship between effective length and summation of occurred bending stress is defined.

  • PDF

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF