• Title/Summary/Keyword: Underground cable tunnel

Search Result 77, Processing Time 0.02 seconds

A Study for Application Ventilation System of Underground cable Tunnel (II) (지하 전력구 터널의 환기시스템 적용에 관한 연구 (II))

  • Kim, Kyoung-Yul;Oh, Ki-Dae;Kim, Dae-Hong;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.778-783
    • /
    • 2008
  • In this paper, numerical method was calculated on evaluation of underground ventilation system to keep servicing a fresh air. The tunnel length for simulation is 18.2 km with various located seven ventilation shaft. Generally, owing to thermal generation in cable tunnel under about 50 m depths, cable tunnel ventilation system is more important than that of other tunnels. So, we conducted that the effects of ventilation systems was simulated depending on the difference of electrical power tunnel length, the number of shaft tunnel, forced ventilation and duct was or not. Test results show that the main conditions in order to enhance the underground cable tunnel are that ventilation systems have to be designed with forced ventilation and with duct.

  • PDF

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

A Study on the Variation of the Transmission Capacity by External water Cooled System with Trough in Tunnel (전력구트라프내간접수냉방식에서의 송전용량 변화에 관한 연구)

  • 박만흥;조규식;김재근;서정윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.445-458
    • /
    • 1992
  • As one of the forced cooling method of the underground power transmission system, external water cooled system with trough in tunnel was investigated. This study is performed on thermal analysis for a standard condition to determine the cable transmission current of the underground power transmission system about the cooling facility. A parametric study was performed for the inlet water temperatures, flow rates, the inlet air velocities, flow rates and the cooling spans. This study shows that the cable transmission current varies within the allowable limitation in compliance with the variation of inlet water temperatures and flow rates. It exhibits little variations for the most intervals in compliance with the variation of inlet air temperatures and flows. But, the cable transmission current fast reduces for a specified interval and consequently affects the underground transmission system. As a result, when the actual forced cooling system is designed, the design conditions of inlet air have to be considered as the most important parameters in determination of the cable transmission current.

Blasting Design for Large Shaft in Urban Area Considering Noise and Vibration -Singapore Transmission Cable Tunnel EW2- (소음 및 진동을 고려한 도심지 내 대단면 수직구 발파설계 사례 -싱가포르 Transmission Cable Tunnel EW2 공구-)

  • Kim, Julie;Lee, Hyo;Kim, Dave;Ko, Tae-Young;Lee, Simon
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • With increasing needs in power, Singapore is requiring stronger power transmission. Singapore Transmission Cable Tunnel is underground tunnel for transmission system installation such as 400 kV cable. This Transmission Cable Tunnel is 35 km long in total. The North-South Transmission Cable Tunnel is 18.5 km long and there is a total of three (3) contracts; NS1, NS2 and NS3 in respect of the design and construction. The East-West Transmission Cable Tunnel is 16.5 km long, and also there is a total of three (3) contracts; EW1, EW2 and EW3. Among of them, SK E&C has been awarded and operating contract EW2 and NS2. In scope of works, each contract has 3 to 4 shafts which connect aboveground and underground high volt cable and those shafts are used as TBM launching shafts during construction. Transmission Cable Tunnel is undercrossing middle of Singapore and most of shafts are located in urban area. Thus, optimal blasting design satisfying high blasting efficiency as well as blasting vibration limit of Singapore is highly required. Blasting design for large shaft of Singapore Transmission Cable Tunnel follows blasting vibration limits in Singapore and reflects our blasting engineering skills. With Singapore Transmission Cable Tunnel Contract EW2, it is expected that our excellent blasting engineering and performance skills can be delivered to the world.

Effect analysis of distributed jointing method on underground Transmission Cables (지중송전케이블의 분산식 접속법에 따른 영향 분석)

  • Ha, C.W.;Kim, J.N.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.148-150
    • /
    • 2002
  • The distributed jointing method is used in the underground tunnel due to narrow space of jointing. This method causes non-uniform length between cable joints. It has an effect on the sheath circulating current and the induced voltage. Furthermore the distributed jointing method may cause transient overvoltage resulting from lightning in underground cable which is connected with overhead line. The author diversely studied the sheath circulating current and induced voltage on underground cable depending on the distributed jointing length under the normal and the transient circumstances. The various simulation results really improve the cable system utility.

  • PDF

Effect of compact HTS superconduction 7ower cable and evaluation of its economical efficiency (컴퍽트형 고온 초전도 전력 케이블의 기대 효과와 경제성 평가)

  • 최상봉;성기철;조건욱;정성환;김대경;김학만;전영환
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.10-14
    • /
    • 2001
  • This paper presents the possible application of a HTS superconducting power cable fro transmitting electric power in metropolitan areas, reflecting its important distinction such as compactness for installation in underground ducts and considerable efficiency improvement comparable to present underground cables. In this paper, we investigated characteristic and market scale compact HTS transmission cable which is possible to install in under-ground ducts. and reviewed its economical efficiency comparing to present existed CV cable construction and duct or tunnel installation.

  • PDF

Implementation of condition monitoring system in underground utility tunnels using inductive coupler (유도성 커플러를 이용한 지하공동구의 상태감시시스템)

  • Ju, Woo-Jin;Kim, Hyun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1597-1603
    • /
    • 2017
  • The incidence of fire in underground utility tunnel is lower than other fires, but the damage caused by fire can cause social loss due to social management paralysis as well as economic loss. Hereupon, this paper presents the results of an empirical test on the construction of the underground utility tunnel condition monitoring system using the leakage coaxial cable installed in the underground utility tunnel. For this reason, a verification test was conducted by connecting a inductive coupler 200 Mbps power line communication modem with insertion loss characteristics of $-6{\pm}2dB$ to the installed the leakage coaxial cable installed in the underground utility tunnel. As a result, We confirmed sending/receiving of IP cameras up to 500 m. Therefore, it is judged that it is possible to construct a condition monitoring system for underground utility tunnel by using the leakage coaxial cables installed in the underground utility tunnels without installing additional communication lines for data transmission.

Application on Cable bolt as Tunnel Support System (터널 보강재로서의 케이블 볼트의 적용성 평가)

  • Kim, Young-Ho;Yoo, Chan-Ho;Han, Beom-Seok;Kim, Seoung-Wook;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1530-1535
    • /
    • 2009
  • The cable bolt is useful underground space support system such as mining in Europe. In spite of favorable strength characteristics, past record of the cable bolt is rarely in Korea. In this study, to evaluate the mechanically characteristics the cable bolt on tunnel support system. To conduct the laboratory strength test in order to enquire material properties as reinforcement material and numerical analysis was performed considering laboratory test results. To estimate the behavior characteristics on tunnel system in which supported by the cable bolt system and compared the behavior characteristics with the rebar rock bolt system result.

  • PDF

Surveillance System For Underground Power Transmission Lines (초고압 지중선로 감시시스템 연구)

  • Hahn, K.M.;Lee, K.C.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.618-620
    • /
    • 1993
  • This system using optical fiber provides various information about underground tunnel and power transmission lines-atmospheric temperature, humidity, oil pressure, flammable gas, cable behavior, and so on. To transmit various data and to keep reliability, optical MUXs are adopted. User can easily operate monitoring software by using GUI.

  • PDF

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence (시공단계별 영향을 고려한 터널 전력구의 유한요소해석)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.