• Title/Summary/Keyword: Underground Cable

Search Result 470, Processing Time 0.035 seconds

Analysis of lightning overvoltage with unbalanced element in Underground Transmission Cable System (지중송전계통에서 불평형요소에 따른 뇌과전압 해석)

  • Kang, J.W.;Lee, D.I.;Kim, J.S.;Kim, Y.S.;Jung, C.K.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.718-720
    • /
    • 2005
  • This paper analyses the transient phenomena against lightning surge on underground power cable systems. For analysis, several actual underground power cable systems are modeled using ATP. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

  • PDF

A Study on Optimal Installation Method of Earth Continuity Conductor on Underground Power Cable Systems (지중송전선로 병행지선 최적 설치 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Yoon, Jong-Keon;Kim, Yang-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1689-1694
    • /
    • 2009
  • In a previous paper, the characteristics of ECC (earth continuity conductor) have been analysed for reducing the level of induced sheath voltage considering the dimension and position of ECC, the spacing between ECC and three phase cables, and the use of two ECC conductors at the single point boned section of underground power cable system. From these results, the study conditions for optimal installation has been selected such as installation section, conductor size and etc. In this paper, 5 cases which are set by possible installation conditions are tested based on previous research results. Finally, the optimal installation method of ECC is selected on underground power cable systems.

A Study on the Remain Life with Aging in 22kV CV cable (22kV 전력케이블의 열화 판정에 관한 연구)

  • Lee, Kwan-Woo;Mok, Young-Soo;Kim, Bo-Kyeong;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.19-21
    • /
    • 2003
  • In this paper, we studied on life-decision of underground cable of live-lines state. As all equipments have been wear, underground cables decided design-life on the whole 30 years because underground cable have been occurred aging as time goes. CV cable has been become about 30 years after installation in the South Korea, is come to a important point of time with estimation about life. Study target cable is 22 kV CV cables in this point of view and installation cable is about 10 years before and behind. Measurement method used dc leakage method of live-lines state that applied voltage of 50V in neutral point and data is analyzing result that is measured during 5 years. In this result, insulation resistance could confirm that change according to season and cause is effect of humidity, seasons and load current. Also, according as data is gone aging, insulation resistance by Weibull distribution could confirm functionally its decrease. As a result, the aging speed of cable that water tree is gone could confirm fastness very. Numerical analysis result, cable that water tree is not gone could confirm that life of cable that has passed 10 years remains about $10{\sim}20$ years.

  • PDF

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

First Installation of High Stress EHV XLPE Cable in korea (초고압 고내력 케이블 국내 최초 현장 적용)

  • Oh, J.O.;Cho, S.H.;Lee, S.K.;Kim, H.J.;Oh, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1057-1059
    • /
    • 1999
  • Recently, increased demand of electrical energy caused additional installation of underground power cable, Industrialization of metro makes civil works difficult. So installed ducts became a key of underground power transmission, LG cable set to work development of high stress cable. LG cable stated in 1996, got a certificate of type test in 1998, and applied at domestic site in Nov. 1999. High stress cable has some merit, decrease of civil cost, reduction of work time, by reason of decrease of dia. and weight, and economical system design, so LG cable has a good merit in comparison with competitive company in domestic and foreign market.

  • PDF

Test-Field Construction for Long-term Reliability of EHV Underground Transmission Cable (초고압 지중케이블 장기신뢰성 실증시험장 구축)

  • Kim, Jin;Kang, Ji-Won;Jang, Tae-In;Yang, Byeung-Mo;Park, Jun-Woo;Park, Hung-Sok;Yoon, Hyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.383_384
    • /
    • 2009
  • After the 1970s, the importance of underground transmission systems increased and the construction rate of underground transmission lines also showed increasing trends each year, especially in metropolitan areas. Accordingly the social ripple effects are very large and wide when the fault occurs in underground power system, and the amount of time and money spent to restore the system also increases. So we must ensure stable operation and long-term reliability of the facilities. In Korea's case, long-term reliability tests for EHV power cables and accessories progressed poorly because equipment was not compatible for long-term reliability tests. Therefore we planned to construct a long-term reliability test field for EHV underground cables in order to ensure international quality reliability and optimal power cable operation techniques. The Gochang Underground Cable Test Field is under construction, funded by the Korean government, the govenment's union investment department, KEPCO, KERI and three private cable corporations. This project began in March, 2005 and will be completed by February, 2010. It is designed to promote joint research by incorporating several types of test equipment, construction of operating facilities, and being an internationally certified authority.

  • PDF

A Review of Strategy to Capture Niche Marketing of HTS Power Distribution Cable

  • Park, Sang-Bong;Nam, Kee-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Ryoo, Hee-Suk
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.11-17
    • /
    • 2004
  • It becomes difficult and high in cost to construct new ducts and/or tunnels for power cables in domestic areas. This paper presents possible strategy of an HTS distribution cables for distributing electric power in local areas as niche marketing. Reflected were its important distinction such as system configuration, rationale, establishment of strategy and considerably high economical efficiency compared with present underground cables. In this paper, applicable important items by using HTS distribution cables in water pumping powerhouse and distribution substation as example objective regions were reviewed. Based on this, the following items on distribution HTS system are examined. (I)A review of constructing a model system to introduce high temperature superconducting distribution cables to objective areas is presented. (2)The strategy to capture HTS distribution cable in water pumping powerhouse and distribution substation as niche marketing regions were reviewed. (3)In concrete, system configuration, rationale, establishment of strategy and considerably high economical efficiency are reviewed between existing cable and HTS one.

Study on the Distribution of Electromagnetic Force for 154 kV Power Transmission Cable on Dual Underground Lines by Normal and Earth Fault Current (지중 2회선 154 kV 송전케이블의 정상 및 지락고장에 따른 전자기력 분포에 관한 연구)

  • Kim, Hui Min;Kim, So Young;Im, Sang Hyeon;Park, Gwan Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The goal of this study is the size and distribution of the electromagnetic force generated by the current flowing through the second underground line of 154kV power transmission cables by using electromagnetic finite element analysis. So we interpret how mutually electromagnetic force has an effect on the comparable judgement of Trefoil, Duct and Flat, which shows in a numerical arrangement. 154kV OF 1200SQ Cable 1.281km not only is applicable to modeling for underground transmission cable but also examine the effect of line to line, phase to phase and size and direction of the electromagnetic force preparing for the occurrence of normal state and single-phase earth fault, which are arranged in trefoil, duct and flat formation between sections. As showing how the trajectory, and size distribution of the electromagnetic force translate as the arrangement of the cables when a steady-state current and a fault current flows on the underground cables, I hope that when Underground transmission is designed, this data will be useful information.

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

Effect of compact HTS superconduction power cable and investigation of its economical efficiency (콤팩트형 고온 초전도 전력 케이블의 도입 효과와 경제성 검토)

  • 최상봉;성기철;조전욱;정성환;김대경
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.108-111
    • /
    • 2001
  • This paper presents the possible application of a HTS superconducting power cable for transmitting electric power in metropolitan areas, reflecting its important distinction such as compactness for installation in underground ducts and considerably economical efficiency comparable to present underground cables. In this paper, we investigated characteristic and market scale compact HTS transmission cable which is possible to install in underground ducts. And reviewed its economical efficiency comparing to present existed CV cable from point of view such as cost for cable construction and duct or tunnel installation.

  • PDF