• Title/Summary/Keyword: Under Expansion

Search Result 1,379, Processing Time 0.03 seconds

Stability and nonlinear vibration of a fuel rod in axial flow with geometric nonlinearity and thermal expansion

  • Yu Zhang;Pengzhou Li;Hongwei Qiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4295-4306
    • /
    • 2023
  • The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.

The study on the buckling instability of the expansion tube type crash energy absorber by using the FEM (FEM을 이용한 확관형 충돌에너지 흡수부재의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.774-779
    • /
    • 2007
  • The crash energy absorbers used in the trains normally are classified into two types. The first is the structure type, which mainly used in not only the primary structure of train but also the crash energy absorbers at the critical accidents. The second is the module type, which just absorbs the crash energy independently and attached onto the structures of the trains. The expansion tube is widely used as the module type of the crash energy absorbers, especially in the trains that have a heavy mass. Since the crash energy is absorbed by means of expanding the tube in the radial direction, the features of the expansion tube have the uniform load during the compression. As the uniform load remains in sudden impact, the expansion tube is effective to decrease acceleration of passengers when the train accident occur. The buckling instability of the expansion tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the expansion tubes under the arbitrary load on the buckling are studied using the ABAQUS/standard and ABAQUS/explicit, a commercial finite element analysis program, and then presents the guideline to design the expansion tubes. The analysis processes to compute the buckling load consist of the linear buckling analysis and the nonlinear post-buckling analysis. To analysis the nonlinear post-buckling analysis, the geometry imperfections are introduced by applying the linear buckling modes to nonlinear post-buckling analysis.

  • PDF

On Determining the Size and the Timing of the Capacity Expansion in PV Module Manufacturing: Management Flexibility in Real Options Model (태양광모듈 생산 증설투자에 대한 의사결정: 실물옵션모형에 의한 경영유연성 가치 분석)

  • Kim, Kyung-Nam;SonU, Suk-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.18-27
    • /
    • 2011
  • Management flexibility to adapt its future actions in response to altered future market conditions can expand the value of an investment opportunity by improving its upside potential without the change in the downside losses. Module manufacturers in solar industry continuously have to decide how much and when its production capacity should be expanded with regards to the demand in the global markets. Either over- or under-investment can cause sunk and/or opportunity costs to the module manufacturers. Option of exercising the additional investments only on favorable opportunities can increase total value of the investment. This paper analyzes the case which shows that the expansion of production capacity with more expandibility can have more value than the rigid plan of capacity expansion. The expansion option value is equivalent to KRW 38.286 billion, thus switching the negative NPV of the initial investment opportunity into the positive value. High volatility and the high growth in the cashflows as the major business features of the renewable energy provide condition where real options can play the crucial role in increasing the investment value as well as in determining the size and timing of capacity expansion in the course of capital budgeting process.

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos;Gomez-Rosas, G.;Ruiz, R.;Nait, M.;Amrouche, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.867-880
    • /
    • 2015
  • Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

A Study on the Movement-Fitness according to the Surface changing of Lower-Limb -On the Movements and Shapes of Lower-limb- (하복의 체표변화에 따른 동작적합성에 관한 연구 -하복동작 및 체형을 중심으로-)

  • 박영득;서영숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 1996
  • The puropose of this study was to investigate the movement-fitness according to the surface changing of lower limb The experimental items were divided into the lower limb movements (5) and body-shapes (7). This study was done by the expansion and contraction rate consideration of length, girth Also, the lower half of body shape-change on the movements and body-shapes by flat shell was done simultaneously. The summarized findings resulted from experiments and investigation are suggested as follows; First, when commpared the expansion and contraction rate of the length and girth items, the expansion rate of the back crotch length (14~20%), hip girth (10~ 21%) and knee girth (6.2~18.5%) in rabbit leap movement was the most notable among all variables considered in this experimentation. On the others hand, the front croth length (-22~-52%) contracted remarkably. And big-thigh type was the most notable on the body-shape comparision. Second, in comparision of the expansion and contraction rate of the area on the blocks, the expansion of the hip (50~200%) and knee (51~74%) block was the most remarkable. Especially, in the sit on knees movement of the hip-down type expanded 209.4%. Third, in comparision of the lower half of body shape-change, on the movements and body- shapes by the flat shell, under the influence of knee-joint and hip-joint the shape-changs of the hip and knee block was the most notable. But the shape-change of the waist, abdomen, calf, and ankle was feeble.

  • PDF

Asymptotically Adimissible and Minimax Estimators of the Unknown Mean

  • Andrew L. Rukhin;Kim, Woo-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.191-200
    • /
    • 1993
  • An asymptotic estimation problem of the unknown mean is studied under a general loss function. The proof of this result is based on the asymptotic expansion of the risk function. Also conditions for second order admissibility and minimaxity of a class of estimators depending only on the sample mean are established.

  • PDF

The Effect of Meta-Kaolin Replacement on Alkali-Silica Reaction (메타카올린 치환에 따른 알칼리-실리카 반응 팽창 저감효과)

  • Jun Ssang Sun;Lee Hyomin;Jin Chi Sub;Hwang Jin Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.360-363
    • /
    • 2004
  • The effectiveness of Meta-Kaolin to prevent detrimental expansion due to alkali-silica reaction was investigated through the ASTM C 1260 method. Reactive aggregate used is a metamorphic rock. The replacement proportions of portland cement by Meta-Kaolin were 0, 5, 10, 15, 25 and 35 percent, respectively. The results indicate that 25 percent replacement of portland cement by Meta-Kaolin seems to be most effective to reduce alkali-silica reaction expansion under this experimental conditions.

  • PDF

Asymptotic computation of Greeks under a stochastic volatility model

  • Park, Sang-Hyeon;Lee, Kiseop
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2016
  • We study asymptotic expansion formulae for numerical computation of Greeks (i.e. sensitivity) in finance. Our approach is based on the integration-by-parts formula of the Malliavin calculus. We propose asymptotic expansion of Greeks for a stochastic volatility model using the Greeks formula of the Black-Scholes model. A singular perturbation method is applied to derive asymptotic Greeks formulae. We also provide numerical simulation of our method and compare it to the Monte Carlo finite difference approach.

Eigenfunction expansion solution and finite element solution for orthotropic hollow cylinder under sinusoidal impact load

  • Wang, X.;Dai, H.L.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 2003
  • The histories and distributions of dynamic stresses in an orthotropic hollow cylinder under sinusoidal impact load are obtained by making use of eigenfunction expansion method in this paper. Dynamic equations for axially symmetric orthotropic problem are founded and results are carried out for a practical example in which an orthotropic hollow cylinder is in initially at rest and subjected to a dynamic interior pressure $p(t)=-{\sigma}_0(sin{\alpha}t+1)$. The features of the solution appear the propagation of the cylindrical waves. The other hand, a dynamic finite element solution for the same problem is also got by making use of structural software (ABAQUS) program. Comparing theoretical solution with finite element solution, it can be found that two kinds of results obtained by two different solving methods are suitably approached. Thus, it is further concluded that the method and computing process of the theoretical solution are effective and accurate.

A Study on the Thermal Stress Analysis of Axi-Symmetric Hollow Cylinder (축대칭 중공실린더의 길이방향 온도분포하의 열탄성응력 해석에 관한 연구)

  • Lee, Sang-Jin;Cho, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3152-3159
    • /
    • 1996
  • Previous works about the cylindrical shape elastic body which is under longitudinal temperature distribution mostly show the results of free expansion, therefore exact thermo-elastic analysis is needed. The object of this work is to analyze the thermo-elastic problem of the hollow cylinder when the cylinder is under longitudinal temperature distribution. In this paper, the analytical solution is found by using Galerkin vector, and it is compared by the results of FEM. For displacements of cylinder, analytical values are almost same as the results of FEM, but free expansion is not fit for analytical solution and the results of FEM. stresses from analytical solution and the results of FEM show good agreement also. but the results are different near the end boundary, since St. Venant principle is applied.