Browse > Article
http://dx.doi.org/10.12989/sem.2015.53.5.867

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples  

Rubio-Gonzalez, Carlos (Centro de Ingenieria y Desarrollo Industrial)
Gomez-Rosas, G. (Universidad de Guadalajara)
Ruiz, R. (Instituto Tecnologico de Morelia)
Nait, M. (Laboratoire de Mecanique de Lille)
Amrouche, A. (Laboratoire de Genie Civil et Geo-Environnement LGCgE)
Publication Information
Structural Engineering and Mechanics / v.53, no.5, 2015 , pp. 867-880 More about this Journal
Abstract
Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.
Keywords
fatigue test; laser shock processing; residual stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chakherlou, T.N. and Vogwell, J. (2003), "The effect of cold expansion on improving the fatigue life of fastener holes", Eng. Fail. Anal., 10, 13-24.   DOI
2 Chu, J.P., Rigsbee, J.M., Banas, G. and Elayed-Ali, H.E. (1999), "Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel", Mater. Sci. Eng. A, 260(1-2), 260-268.   DOI
3 Cuellar, S.D., Hill, M.R. and DeWald, A.T. (2012), "Rankin J. E., Residual stress and fatigue life in laser shock peened open hole samples", Int. J. Fatig., 44, 8-13.   DOI
4 Ding, K. and Ye, L. (2006), "Simulation of multiple laser shock peening of a 35CD4 steel alloy", J. Mater. Proc. Tech., 178, 162-169.   DOI
5 Ghfiri, R., Amrouche, A., Imad, A. and Mesmacque, G. (2000), "Fatigue life estimation after crack repair in 6005 A-T6 aluminium alloy using the cold expansion hole technique", Fatig. Fract. Eng. Mater. Struct., 23, 911-916.   DOI
6 Hatamleh, O. (2009), "A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints", Int. J. Fatig., 31, 974-988.   DOI   ScienceOn
7 Hatamleh, O., Hill, M., Forth, S. and Garcia, D. (2009), "Fatigue crack growth performance of peened friction stir welded 2195 aluminum alloy joints at elevated and cryogenic temperatures", Mat. Sci. Eng. A, 519 (1-2), 61-69   DOI
8 Hatamleh, O., Lyons, J. and Forman, R. (2007), "Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints", Int. J. Fatig., 29(3), 421-434.   DOI
9 Hong, Z. and Chengye, Y. (1998), "Laser shock processing of 2024-T62 aluminum alloy", Mater. Sci. Eng. A, 257, 322-327.   DOI
10 Huang, H.F., Yan, H. and Tao, C.H. (1998), "Probabilistic analysis of equivalent initial defects sizes of two kinds of materials", J. Mech. Strength, 20 (3), 237-239.
11 Ivetic, G. (2011), "Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets", Surf. Eng., 27, 445-453.   DOI
12 Ivetic, G., Meneghin, I. and Troiani, E. (2011), "Numerical analysis of laser shock peening as a process for generation of compressive residual stresses in open hole specimens", Mater. Sci. Forum, 681, 267-272.
13 Ivetic, G., Meneghin, I., Troiani, E., Molinari, G., Ocana, J., Morales, M., Porro, J., Lanciotti, A., Ristori, V., Polese, C., Plaisier, J. and Lausi, A. (2012), "Fatigue in laser shock peened open-hole thin aluminium specimens", Mater. Sci. Eng. A, 534, 573-579.   DOI
14 Lacarac, V., Smith, D.J., Pavier, M.J. and Priest, M. (2000), "Fatigue crack growth from plain and cold expanded holes in aluminium alloys", Int. J. Fatig., 22, 189-203.   DOI
15 Lavender, C.A., Honga, S.T., Smith, M.T., Johnson, R.T. and Lahrman, D. (2008), "The effect of laser shock peening on the life and failure mode of a cold pilger die", J. Mater. Proc. Tech., 204, 486-491.   DOI   ScienceOn
16 Liu, J., Shao, X.J., Liu, Y.S. and Yue, Z.F. (2008), "Effect of cold expansion on fatigue performance of open holes", Mater. Sci. Eng. A, 477, 271-276   DOI
17 Minguez, J.M. and Vogwell, J. (2006), "Fatigue life of an aerospace aluminium alloy subjected to cold expansion and a cyclic temperature regime", Eng. Fail. Anal., 13, 997-1004.   DOI
18 Ocana, J.L., Morales, M., Molpeceres, C. and Torres, J. (2004), "Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments", Appl. Surf. Sci., 238, 242-248.   DOI
19 Tsay, L.W., Young, M.C. and Chen, C. (2003), "Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen", Corros. Sci., 45, 1985-1997.   DOI
20 Semari, Z., Aid, A., Benhamena, A., Amrouche, A., Benguediab, M., Sadok, A. and Benseddiq, N. (2013), "Effect of residual stresses induced by cold expansion on the crack growth in 6082 aluminum alloy", Eng. Fract. Mech., 99, 159-168.   DOI
21 Yang, J.M., Her, Y.C., Han, N. and Clauer, A. (2001), "Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes", Mater. Sci. Eng. A, 298, 296-299.   DOI
22 Zhang, X. and Wang, Z. (2003), "Fatigue life improvement in fatigue-aged fastener holes using the cold expansion technique", Int. J. Fatig., 25, 1249-1257.   DOI   ScienceOn
23 ASTM (2002), Annual book of ASTM Standards, v.03.01 No. E647-00, Standard Test Method for Measurement of Fatigue Crack Growth Rates.
24 Aid, A., Semari, Z. and Benguediab, M. (2014), "Cold expansion effect on the fatigue crack growth of Al6082: numerical investigation", Struct. Eng. Mech., 49 (2), 225-235.   DOI
25 Amrouche, A., Mesmacque, G., Garcia, S. and Talha, A. (2003), "Cold expansion effect on the initiation and the propagation of the fatigue crack", Int. J. Fatig., 25, 949-54.   DOI   ScienceOn
26 Anderson, T. L. (1995), Fracture Mechanics, Fundamentals and Applications, CRC Press, New York.
27 Rankin, J.E., Hill, M.R. and Hackel, L.A. (2003), "The effects of process variations on residual stress in laser peened 7049 T73 aluminum alloy", Mater. Sci. Eng. A, 349, 279-291.   DOI
28 Papanikos, P. and Meguid, S.A. (1999), "Elasto-plastic finite-element analysis of the cold expansion of adjacent fastener holes", J. Mater. Proc. Tech., 92-93, 424-428.   DOI
29 Peyre, P. and Fabbro, R. (1995), "Laser shock processing: a review of the physics and applications", Optic. Quant. Electron., 27, 1213-1229.
30 Prime, M.B. (2001), "Cross sectional mapping of stresses by measuring the contour after a cut", J. Eng. Mater. Technol., 123, 162-168.   DOI
31 Rubio-Gonzalez, C., Felix-Martinez, C., Gomez-Rosas, G., Ocana, J.L., Morales, M. and Porro, J. (2011), "Effect of laser shock processing on fatigue crack growth of duplex stainless steel", Mater. Sci. Eng. A, 528, 914-919.   DOI
32 Rubio-González, C., Gomez-Rosas, G., Ocaña, J.L, Molpeceres, C., Banderas, A., Porro, J. and Morales, M. (2006), "Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples", Appl. Surf. Sci., 252, 6201-6205.   DOI
33 Rubio-Gonzalez, C., Ocana, J.L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J. and Morales, M. (2004), "Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy", Mater. Sci. Eng. A, 386, 291-295.   DOI
34 Sanchez-Santana, U., Rubio-Gonzalez, C., Gomez-Rosas, G., Ocaña, J.L, Molpeceres, C., Porro, J. and Morales, M. (2006), "Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing", Wear, 260, 847-854.   DOI   ScienceOn