• Title/Summary/Keyword: Under Bump Metallization

Search Result 19, Processing Time 0.021 seconds

Effect of Under Bump Metallization (UBM) on Interfacial Reaction and Shear Strength of Electroplated Pure Tin Solder Bump (전해 도금된 주석 솔더 범프의 계면 반응과 전단 강도에 미치는 UBM의 효과)

  • Kim, Yu-Na;Koo, Ja-Myeong;Park, Sun-Kyu;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • The interfacial reactions and shear strength of pure Sn solder bump were investigated with different under bump metallizations (UBMs) and reflow numbers. Two different UBMs were employed in this study: Cu and Ni. Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) were formed at the bump/Cu UBM interface, whereas only a Ni3Sn4 IMC was formed at the bump/Ni UBM interface. These IMCs grew with increasing reflow number. The growth of the Cu-Sn IMCs was faster than that of the Ni-Sn IMC. These interfacial reactions greatly affected the shear properties of the bumps.

Recent Advances in Fine Pitch Cu Pillar Bumps for Advanced Semiconductor Packaging (첨단 반도체 패키징을 위한 미세 피치 Cu Pillar Bump 연구 동향)

  • Eun-Chae Noh;Hyo-Won Lee;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, as the demand for high-performance computers and mobile products increases, semiconductor packages are becoming high-integration and high-density. Therefore, in order to transmit a large amount of data at once, micro bumps such as flip-chip and Cu pillar that can reduce bump size and pitch and increase I/O density are used. However, when the size of the bumps is smaller than 70 ㎛, the brittleness increases and electrical properties decrease due to the rapid increase of the IMC volume fraction in the solder joint, which deteriorates the reliability of the solder joint. Therefore, in order to improve these issues, a layer that serves to prevent diffusion is inserted between the UBM (Under Bump Metallization) or pillar and the solder cap. In this review paper, various studies to improve bonding properties by suppressing excessive IMC growth of micro-bumps through additional layer insertion were compared and analyzed.

A Study on the Characteristics of Sn-Cu Solder Bump for Flip Chip by Electroplating (전해도금에 의한 플립칩용 Sn-Cu 솔더범프의 특성에 관한 연구)

  • Jung, Seok-Won;Hwang, Hyun;Jung, Jae-Pil;Kang, Chun-Sik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.49-53
    • /
    • 2002
  • The Sn-Cu eutectic solder bump formation ($140{\mu}{\textrm}{m}$ diameter, $250{\mu}{\textrm}{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Cu deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased with increasing time. The plating rate increased generally according to current density. After the characteristics of Sn-Cu plating were investigated, Sn-Cu solder bumps were fabricated on optimal condition of 5A/dm$^2$, 2hrs. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallization). The shear strength of Sn-Cu bump after reflow was higher than that of before reflow.

  • PDF

Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints

  • Chen, Hsiao-Yun;Ku, Min-Feng;Chen, Chih
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2012
  • The effect of under-bump-metallization (UBM) on electromigration was investigated at temperatures ranging from $135^{\circ}C$ to $165^{\circ}C$. The UBM structures were examined: 5-${\mu}m$-Cu/3-${\mu}m$-Ni and $5{\mu}m$ Cu. Experimental results show that the solder joint with the Cu/Ni UBM has a longer electromigration lifetime than the solder joint with the Cu UBM. Three important parameters were analyzed to explain the difference in failure time, including maximum current density, hot-spot temperature, and electromigration activation energy. The simulation and experimental results illustrate that the addition 3-${\mu}m$-Ni layer is able to reduce the maximum current density and hot-spot temperature in solder, resulting in a longer electromigration lifetime. In addition, the Ni layer changes the electromigration failure mode. With the $5{\mu}m$ Cu UBM, dissolution of Cu layer and formation of $Cu_6Sn_5$ intermetallic compounds are responsible for the electromigration failure in the joint. Yet, the failure mode changes to void formation in the interface of $Ni_3Sn_4$ and the solder for the joint with the Cu/Ni UBM. The measured activation energy is 0.85 eV and 1.06 eV for the joint with the Cu/Ni and the Cu UBM, respectively.

Formation of Sn-Cu Solder Bump by Electroplating for Flip Chip (플립칩용 Sn-Cu 전해도금 솔더 범프의 형성 연구)

  • 정석원;강경인;정재필;주운홍
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Sn-Cu eutectic solder bump was fabricated by electroplating for flip chip and its characteristics were studied. A Si-wafer was used as a substrate and the UBM(Under Bump Metallization) of Al(400 nm)/Cu(300 nm)/Ni(400 nm)/Au(20 nm) was coated sequentially from the substrate to the top by an electron beam evaporator. The experimental results showed that the plating ratio of the Sn-Cu increased from 0.25 to 2.7 $\mu\textrm{m}$/min with the current density of 1 to 8 A/d$\m^2$. In this range of current density the plated Sn-Cu maintains its composition nearly constant level as Sn-0.9∼1.4 wt%/Cu. The solder bump of typical mushroom shape with its stem diameter of 120 $\mu\textrm{m}$ was formed through plating at 5 A/d$\m^2$ for 2 hrs. The mushroom bump changed its shape to the spherical type of 140 $\mu\textrm{m}$ diameter by air reflow at $260^{\circ}C$. The homogeneity of chemical composition for the solder bump was examined, and Sn content in the mushroom bump appears to be uneven. However, the Sn distributed more uniformly through an air reflow.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

Study on the Characteristics of Electroplated Solder: Comparison of Sn-Cu and Sn-Pb Bumps (무연 도금 솔더의 특성 연구: Sn-Cu 및 Sn-Pb 범프의 비교)

  • 정석원;정재필
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.386-392
    • /
    • 2003
  • The electroplating process for a solder bump which can be applied for a flip chip was studied. Si-wafer was used for an experimental substrate, and the substrate were coated with UBM (Under Bump Metallization) of Al(400 nm)/Cu(300 nm)Ni(400 nm)/Au(20 nm) subsequently. The compositions of the bump were Sn-Cu and eutectic Sn-Pb, and characteristics of two bumps were compared. Experimental results showed that the electroplated thickness of the solders were increased with time, and the increasing rates were TEX>$0.45 <\mu\textrm{m}$/min for the Sn-Cu and $ 0.35\mu\textrm{m}$/min for the Sn-Pb. In the case of Sn-Cu, electroplating rate increased from 0.25 to $2.7\mu\textrm{m}$/min with increasing current density from 1 to 8.5 $A/dm^2$. In the case of Sn-Pb the rate increased until the current density became $4 A/dm^2$, and after that current density the rate maintains constant value of $0.62\mu\textrm{m}$/min. The electro plated bumps were air reflowed to form spherical bumps, and their bonded shear strengths were evaluated. The shear strength reached at the reflow time of 10 sec, and the strength was of 113 gf for Sn-Cu and 120 gf for Sn-Pb.

Measurement of Local Elastic Properties of Flip-chip Bump Materials using Contact Resonance Force Microscopy (접촉 공진 힘 현미경 기술을 이용한 플립 칩 범프 재료의 국부 탄성계수 측정)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Junhee
    • Tribology and Lubricants
    • /
    • v.28 no.4
    • /
    • pp.173-177
    • /
    • 2012
  • We used contact resonance force microscopy (CRFM) technique to determine the quantitative elastic properties of multiple materials integrated on the sub micrometer scale. The CRFM approach measures the frequencies of an AFM cantilever's first two flexural resonances while in contact with a material. The plain strain modulus of an unknown or test material can be obtained by comparing the resonant spectrum of the test material to that of a reference material. In this study we examined the following bumping materials for flip chip by using copper electrode as a reference material: NiP, Solder (Sn-Au-Cu alloy) and under filled epoxy. Data were analyzed by conventional beam dynamics and contact dynamics. The results showed a good agreement (~15% difference) with corresponding values determined by nanoindentaion. These results provide insight into the use of CRFM methods to attain reliable and accurate measurements of elastic properties of materials on the nanoscale.