• Title/Summary/Keyword: Unconstrained algorithm

Search Result 111, Processing Time 0.027 seconds

Design of an Optimal State Feedback Controller for Container Crane Systems with Constraints (제약조건을 가지는 컨테이너 크레인 시스템용 최적 상태궤환 제어기 설계)

  • 주상래;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • This paper presents the design of an optimal state feedback controller for container cranes under some design specifications. To do this, the nonlinear equation of a container crane system is linearized and then augmented to eliminate the steady-state error, and some constraints are derived from the design specifications. Designing the controller involves a constrained optimization problem which classical gradient-based methods have difficulties in handling. Therefore, a real-coding genetic algorithm incorporating the penalty strategy is used. The responses of the proposed control system are compared with those of the unconstrained optimal control system to illustrate the efficiency.

  • PDF

Optimal design of the PID Controller using a predictive control method

  • Kim, Sang-Joo;Lee, Jang-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller, which has similar features to the model-based predictive controller. A PID type control structure is defined which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are pre-calculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with generalized predictive controller and the results are compared with generalized predictive control solutions.

The Optimal Design of SAW Filters with Arbitrary Frequency Characteristics (임의의 주파수 특성을 갖는 표면음파 필터의 최적 설계)

  • Park, Seog-Hong;Son, Yeong-Chan;Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.81-87
    • /
    • 1996
  • This paper presents the optimal design method of SAW filters with arbitrary frequency characteristics. The design program using the unconstrained nonlinear optimization method and FFT algorithm is developed for optimal design of SAW filters with arbitrary frequency characteristics. As a design example, a SAW TV IF filter with asymmetric-amplitude and nonlinear-phase frequency characteristics is designed.

  • PDF

Receding Horizon Control (이동구간 제어기법)

  • 권욱현;안춘기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.177-185
    • /
    • 2003
  • Current issues of receding horizon control scheme are reviewed. The basic idea of receding horizon control is presented first. For unconstrained and constrained systems, the results of closed-loop stability in receding horizon control are surveyed. We investigate the two categories of robustness of receding horizon control : stability robustness and performance robustness. The existing optimization algorithm to solve receding horizon control problem is briefly mentioned. It is shown that receding horizon control has been extended to nonlinear systems without losing good properties such as stability and robustness. Many industrial applications are reported along with extensive references related to receding horizon control.

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Constrained Dynamic Responses of Structures Subjected to Earthquake

  • Eun, Hee Chang;Lee, Min Su
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for constrained systems and Gauss's principle. And minimizing a function of the variation in kinetic energy at constrained and unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result compares with the generalized inverse method proposed by Udwadia and Kalaba. It is investigated that the responses of a 10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations. The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and the junction positions of two structures. Under an assumption that the bars have the same mass density, this study determines the junction positions to minimize the total dynamic responses of the structure.

Optimal Collision-Free Path Planning of Redundant Robotic Manipulators (여유 자유도를 갖는 Robot Manipulator 최적 충돌 회피 경로 계획에 관한 연구)

  • 장민근;기창두;기석호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.743-747
    • /
    • 1996
  • A Potential Field Method is applied to the proposed algorithm for the planning of collision-free paths of redundant manipulators. The planning is carried out on the base of kinematic configuration. To make repulsive potentials, sources are distributed on the boundaries of obstacles. To escape from local minimum of the main potential and to attack other difficulties of the planning, various potentials are defined simultaneously, Inverse Kinematics Problems of the redundant manipulators are solved by unconstrained optimization method. Computer simulation result of the path planning is presented.

  • PDF

Uncalibrated Visual Servoing through the Efficient Estimation of the Image Jacobian for Large Residual

  • Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.385-392
    • /
    • 2013
  • An uncalibrated visual servo control method for tracking a target is presented. We define the robot-positioning problem as an unconstrained optimization problem to minimize the image error between the target feature and the robot end-effector feature. We propose a method to find the residual term for more precise modeling using the secant approximation method. The composite image Jacobian is estimated by the proper method for eye-to-hand configuration without knowledge of the kinematic structure, imaging geometry and intrinsic parameter of camera. This method is independent of the motion of a target feature. The algorithm for regulation of the joint velocity for safety and stability is presented using the cost function. Adaptive regulation for visibility constraints is proposed using the adaptive parameter.

A robust nonlinear mathematical programming model for design of laterally loaded orthotropic steel plates

  • Maaly, H.;Mahmoud, F.F.;Ishac, I.I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.223-236
    • /
    • 2002
  • The main objective of the present paper is to address a formal procedure for orthotropic steel plates design. The theme of the proposed approach is to recast the design procedure into a mathematical programming model. The objective function to be optimized is the total weight of the structure. The total weight is function of its layout parameters and structural element design variables. Mean while the proposed approach takes into consideration the strength and rigidity criteria in addition to other dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted for minimization strategy, where the primal model constrained problem is transformed into a sequence of unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin theory is selected to simulate the finite element model and a selective reduced integration scheme is exploited to avoid a shear lock problem.

Optimum Design Criteria Based on the Rated Watt of a Synchronous Reluctance Motor Using a Coupled FEM & SUMT (유한요소법과 SUMT를 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조 최적설계)

  • Kwon, Sun-Bum;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.364-369
    • /
    • 2005
  • This paper deals with an automatic optimum design based on a rated output for a synchronous reluctance motor (SynRM). The focus of this paper is the motor design relative to the output power on the basis of rotor shape of a SynRM in each rated watt. And optimization algorithm is used by means of sequential unconstrained minimization technique(SUMT). The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to rated watt starting from an existing motor or a preliminary design.