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Uncalibrated Visual Servoing through the Efficient Estimation  

of the Image Jacobian for Large Residual 
 

 

Gon-Woo Kim
† 
 

 

Abstract – An uncalibrated visual servo control method for tracking a target is presented. We define 

the robot-positioning problem as an unconstrained optimization problem to minimize the image error 

between the target feature and the robot end-effector feature. We propose a method to find the residual 

term for more precise modeling using the secant approximation method. The composite image 

Jacobian is estimated by the proper method for eye-to-hand configuration without knowledge of the 

kinematic structure, imaging geometry and intrinsic parameter of camera. This method is independent 

of the motion of a target feature. The algorithm for regulation of the joint velocity for safety and 

stability is presented using the cost function. Adaptive regulation for visibility constraints is proposed 

using the adaptive parameter. 
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1. Introduction 
 
Visual servoing is a control method that uses visual 

information. Visual-feedback control is generally referred 

to as visual servoing. According to the feedback information, 

the visual servo control systems can be divided into two by 

taxonomy of visual servo systems proposed by Sanderson 

and Weiss [1]. These two well-known systems are the 

position-based and the image-based visual servo control 

system. 

Image-based visual servoing is generally robust not only 

with respect to camera but also to robot calibration error. In 

the image-based visual servoing for tracking a target, the 

image error between the target feature and the end-effector 

(or desired target feature) is used to control the robot 

manipulator [1-8]. In this paper, the robot system is 

controlled using nonlinear least squares optimization 

method based on unconstrained optimization problem for 

the image error. Jagersand [8] and Piepmeier [5, 6, 9] 

presented the image-based visual servoing using the 

nonlinear least squares optimization method, but they did 

not use the residual term due to the difficulty in estimating 

(zero residual case).  

This paper proposes the image-based visual servoing 

method in which the estimation of the residual term has 

been modified using the secant approximation method 

(large residual case). The dynamic visual servoing method 

was adopted for moving targets [9]. 

The image Jacobian contains system parameters such as 

the kinematic model and the camera model. The system 

parameters can be identified in a calibration process. With 

this process, the visual servo controller using the image 

Jacobian with this process is not robust for disturbance, 

change of parameters and so on. To overcome such defects, 

the uncalibrated visual servoing using the estimation of the 

image Jacobian was presented [4, 6, 8-15]. Estimating the 

image Jacobian using the Broyden’s method was originally 

developed by Hosoda [4]. In [5], the authors demonstrated 

the model-independent target tracking using the extended 

methods of estimation of the image Jacobian. Hosada [4] 

and Jagersand [8] demonstrated the estimation of the image 

Jacobian using the Broyden’s method for a stationary target, 

and Piepmeier [6, 9] proposed the dynamic Jacobian 

estimation method for a moving target. Shademan et al. in 

[14] proposed the robust Jacobian estimation algorithm 

with the rejection of outliers using M-estimator. Wang et al. 

proposed the adaptive visual servoing for the eye-in-hand 

robot system using point and line features [15]. 

Most of the previous works [4, 6, 8, 9, 11] used the 

image error to estimate the image Jacobian using the 

Broyden’s method, but it is dependent for the target feature. 

The proposed algorithm to estimate the image Jacobian in 

this paper is mostly based on the algorithm presented in 

[11]. For the moving target, however, the previous work 

has a little but crucial problem caused by the affine model 

using not the end-effector feature but the image error. 

Therefore we propose an improved Jacobian estimation 

method in this paper. We defined the affine model for the 

end-effector feature and we estimated the image Jacobian 

with the affine model. This method is efficient for the eye-

to-hand visual servoing and independent of the target 

feature irrespective of whether the target is moving or not. 

We also evaluate the improved performance using the 

experimental results. 

The control input should be regulated for safety purpose 

in real experiments because the end-effector can move 

beyond the visual scope of the camera in the eye-to-hand 
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robot system. We propose, however, the regulation method 

using the cost function approach considering the visibility 

in the image plane. In several papers, the cost function 

approach has been applied to avoid the robot joint limits 

[12, 13]. This paper uses the concept of the cost function 

and defines the cost function to regulate the joint velocity 

using the adaptive parameter for the visibility constraints. 

There are two major contributions of this paper. The first 

is that the estimation method of the image Jacobian has 

been improved using the affine model for the end-effector 

feature. The second is that a method for regulating the joint 

velocity using the adaptive parameter for the visibility 

constraints is proposed. 

The discussion in this paper will proceed as follows. 

Section II presents the background of the proposed 

uncalibrated image-based visual servoing with the 

modified method for estimating the image Jacobian. 

Section III shows the regulation algorithm of the joint 

velocity using the cost function. The experimental results 

are given in Section IV. 

 

 

2. Background 

 

2.1 Unconstrained optimization problem for image-

based visual servoing 

 

Considering the eye-to-hand vision system, the camera 

can observe the target feature and the end-effector feature 

at the same time. In the image plane, the moving target 

feature, ( )tf t , is defined as the function of time t, and the 

end-effector feature, ( )rf q , is defined as the function of 

the robot joint variables q. The control problem of the 

target tracking is defined as the minimization of the image 

error. The image error between the moving target feature 

and the end-effector feature can be expressed as ( , )e q t =  
( ) ( )r tf q f t−  in the image plane. In order to minimize the 

image error, we define the objective function as 
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Fig. 1. The schematic control architecture for eye-to-hand 

visual servo control system 
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This objective function is a highly nonlinear function 

because the image features are determined by the complex 

geometric relationship.  

The nonlinear least squares optimization problem for 

tracking a moving target can be defined as 

 

 min ( , )
nq R
E q t

∈  (2) 

 
which is minimized at the robot joint configuration 

*q  

satisfying the equation, 
*( ) 0E q q∂ ∂ = . 

If we assume the linear model in the neighborhood at 
( , )q t , the objective function can be approximated using 

the Taylor series expansion for multivariable functions as 
 

 ˆ ( , ) ( , ) ( , )( ) ( , )( )q tE q t E q t E q t q q E q t t t= + ∇ − + ∇ −  (3) 

 
where q∇  and t∇  are partial derivatives of variable q 

and t, respectively.  

Assume that the objective function is the second order 

differentiable for q. The gradient of the approximation 

model is shown as 
 

 

( )

ˆ ( , )
( , ) ( , )( )

( , ) ( )

2

q q

q t

E q t
E q t E q t q q

q

E q t t t

∂
= ∇ +∇ −

∂

+∇ ∇ −

  (4) 

 
We define the composite image Jacobian of robot, 

( )( )q rJ q f q q= ∂ ∂  and the image Jacobian of target, 

( )( )t tJ t f t t= ∂ ∂ . The first and second order differential 

terms of the objective function are shown as 
 

 
( ) ( ) ( , )

( ) ( ) ( ) ( , )2

T

q q

T

q q q

E q J q e q t

E q J q J q R q t

∇ =

∇ = +
 (5) 

 

( )( , ) ( ) ( , )where    
T

q qR q t J q e q t= ∇  

 

If the gradient of the approximation model at ( , )k kq t  is 

zero, the robot joint configuration can be the minimizer of 

the object function. The iterative form of the joint value to 

minimize the objective function become 

 

 
( )

( ( ) ( ) ( , ))

( ) ( , ) ( )

1

1

T

k k q k q k k k

T

q k k k t k s

q q J q J q R q t

J q e q t J t T

−
+ = − +

⋅ +
  (6) 

 

where Ts is the time period which is a constant. For the 

static target, the image Jacobian of the target, ( )tJ t , is 

zero. 

We propose the method to estimate the residual term for 

more precise modeling using the secant approximation 

method. 
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We have to compute the Hessian matrix of the robot end-

effector feature vector, ( ) ( )2

q rH q f q= ∇ , in order to find 

the gradient of the composite image Jacobian of robot.  

Using the secant approximation method, the 

approximation model of the Hessian matrix at qk, Hk, can 

be expressed as 

 

 
( ) ( ) ( )

( ) ( )

1 1

1
                       

k k k q r k q r k

q k q k

H q q f q f q

J q J q

− −

−

− = ∇ −∇

= −
 (7) 

 

The approximation model can be adopted as the Hessian 

matrix in (5), that is, ( )2

k q r kH f q≈ ∇  at qk.  

 

 ( )
( ) ( )

( ) ( )
( ) ( ) ( )

,
1 1

1 1

T T

q k q k k k k

k k T

k k k k

J q J q e q q q
R q t

q q q q

− −

− −

− −
=

− −
 (8) 

 

2.2 Estimation of the image jacobian 

 

In this section, the proper algorithm of estimating the 

image Jacobian for eye-to-hand vision system is presented. 

We used only the robot end-effector feature for estimating 

the image Jacobian. This method shows better performance 

than the previous works [4, 6, 8, 9, 11] and can be applied 

for both a stationary target and a moving target.  

The proposed algorithm to estimate the image Jacobian 

in this paper is mostly based on the algorithm presented in 

[11]. For the moving target, however, the previous work 

has a little but crucial problem caused by the affine model 

using not the end-effector feature but the image error. 

Therefore, we proposed the modified image Jacobian 

estimation method independent of the target feature for 

eye-to-hand visual servoing.  

The Taylor series expansion of the robot end-effector 

feature near qk, can be expressed as  

 

 ( )( ) ( ) ( )( )
2

r r k q r k k kf q f q f q q q O q q= + ∇ − + −   (9) 

 
We approximate (9) by ignoring the high-order term and 

define the affine model of the robot end-effector feature as 

 

 ( ) ( ) ( )( )k r k q r k kl q f q f q q q= + ∇ −   (10) 

 

This affine model is more efficient than the other affine 

models used in the previous work. If the kth affine model 

correctly specifies the error at the (k-1)th increment, the 

equation can be calculated from (10). 

 

( )ˆ ˆ ˆ( ( ) ( )) ( ) ( ) ( )
1 1 1q k q k r k r k q kJ q J q q f q f q J q q∆ ∆− − −− = − −

  (11) 
 
The estimated image Jacobian can be calculated using 

the Broyden’s rank-one update method as follows. 

( )( ) ( )
( ) ( )

ˆ ˆ( ) ( )

ˆ( ) ( ) ( )

1

1 1 1 1

1 1

q k q k

T

r k r k q k k k k k

T

k k k k

J q J q

f q f q J q q q q q

q q q q

−

− − − −

− −

=

− − − −
+

− −

  

  (12) 

 

We applied the modified estimation method using 

recursive least squares (RLS) algorithm. The cost function 

for a change of the affine model in (10) can be expressed as 

 

 ( ) ( ) ( )
2

1 1 1

1

n
k i

k i i i

i
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− − −

=

= −∑  (13) 

 
ˆ ( )q kJ q  is calculated to minimize (13) using RLS 

algorithm. That is 
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P q q q q P
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−
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 − −
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 (14) 

 

The forgetting factor, [ ],0 1λ∈ , is the rate of 

dependency for the past data. As it is already known, the 

factor greatly influences the performance of the system. 

 

 

3. Regulation of the Joint Velocity 

 

In this section, we propose the velocity regulation 

algorithm for safety and stability purpose. The adaptive 

parameter adjusts the velocity regulation level for the 

visibility constraints in the image plane. 

If the velocity of the joint value calculated in (6) is so 

large to the extent that the robot end-effector moves 

beyond the visible scope of the camera, the camera would 

lose sight of the position of the robot end-effector. This is 

in turn means that the visual servo control has failed. 

Normally the joint velocity is regulated using the heuristic 

method to ensure safety. However, we propose an efficient 

method for regulation using cost function of the joint 

velocity and adaptive parameter for visibility constraints. 

 

3.1 Adaptive parameter for visibility constraints 

 

The visibility constraints are increased near the 

boundary of the image plane. Therefore it is necessary to 

regulate the image feature velocity of the robot end-

effector near the boundary more tightly than the center.  

We define the adaptive parameter for consideration to 

these visibility constraints. 
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( ) exp ( ( ) ) ( ( ) )

1
1

2

   0 1

T

r p r pf q f W f q f

for

α γ γ

γ

 
= − − − − + 

 
≤ <

 (15) 

 

where γ is a positive scaling factor which adjusts the lower 

bound of the image feature velocity of the robot end-

effector and W is a weighting matrix which is a positive 

definite matrix. fp is the principle point of the image plane, 

that is, the center point of the image plane in pixels. 

As shown in Fig. 2, the value of the adaptive parameter 

is almost 1 near the center and (1- γ) near the boundary 

where γ is 0.2. The sharpness of the ridge of the adaptive 

parameter is determined by a weighting matrix, W. The 

adaptive parameter for the visibility constraints is used as a 

scaling factor for the cost function to prevent the joint 

velocity from exceeding the limit of feature velocity.  

 

Adaptive Parameter In The Image Plane

Y axis [pixel]
X axis [pixel]

α

 

Fig. 2. Adaptive parameter for visibility constraints: γ=0.2, 

W=10-4×I2 and fp = [320 240]T 

 

3.2 Cost function for regulation of the joint velocity 

using the adaptive parameter 

 

In this paper, the cost function is defined using the 

square of the joint velocity. This cost function is intended 

to regulate the joint velocity to prevent it from exceeding 

the limit of the joint velocity and to modify the control 

input of the robot joint value using the minimizer of the 

cost function. 

The cost function to be minimized is defined by 

 

 

min ( )

,

1

limit limit2

limit limit

1

2

  for    

     for 

0

T

c

j j j j

j j j j j

n

G c c c

c
q q q q

c
where c c q q q q

otherwise
c

α
α

=

 
 − > 
 = = + < −      

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ
⋮

(16) 

where α is the adaptive parameter, qɺ  is the joint velocity 

and limit
qɺ  is the limit of the joint velocity. The offset 

region is between limit
qα− ɺ  and limit

qα ɺ  as shown in Fig. 3. 

Fig. 3 shows the cost function when the image feature of 

the robot end-effector is located at the center of the image 

plane. Within the offset region, the visual tracking system 

is not disturbed by the cost function. 

To minimize the cost function for the joint velocity, the 

gradient of the cost function must be zero 
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( ) 0
c

G c
G c
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∂
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∂
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Fig. 3. The cost function, G(c), for regulation of the joint  

velocity at the case of two joints: [ ]. .limit 1 5 1 5
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In order for the gradient of the cost function to be zero, 

the joint velocity must be controlled to move in opposite 

direction of the gradient. Then, we can find the joint value 

to minimize the cost function and modify the joint value to 

the iterative form as 
 

 
( )

1k k s

G c
q q T

c
+

∂
= − ⋅

∂
 (18) 

 
where Ts is the time period. 

In Section II, we found the iterative form of joint value 

for minimizing the objective function for tracking a 

moving target. Here, we will consider two tasks: one is 

tracking a moving target using the objective function 

mentioned in Section II, and the other is regulating the 

joint velocity using the cost function in this section.  

In order to control the robot end-effector properly, a 

process to combine these two tasks is needed. Using (6) 

and (18), the modified iterative form of the joint value 

becomes 

 

 
( )

( ( ) ( ) ( , ))
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1
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k k q k q k k k
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k k k t k s s

q q J q J q R q t

G c
J q e q t J t T T

c

−
+ = − +

∂
⋅ + − ⋅

∂

 (19) 
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3.3 Simulation of the regulation of the joint velocity 

using the adaptive parameter 

 

For the eye-to-hand system, the robot should not be 

controllable if the end-effector moves out of the view of 

the camera. It is because the pose information of the end-

effector has been lost.  

For evaluating the effectiveness of the regulation of the 

joint velocity, we performed the simulation. We assume 

that the resolution of the camera is 640x480(pixel). For the 

effective evaluation of performance, the stationary goal 

position is set as (450, 480) at the boundary in the image 

plane as shown in Fig. 4 and 5.  

Fig. 4 shows the simulation result without the regulation 

of the joint velocities using (6). As you can see at the top of 

Fig. 4, the end-effector has been disappeared in the view of 

the camera while it is approaching to the goal position. (In 

this simulation, we provide the pose information of the 

end-effector even if the end-effector stays out of the view.) 

In this situation, there is little possibility to succeed the 

visual servoing task of the end-effector toward the goal 

position.  

For the same situation, however, the joint velocity can be 

effectively regulated using the proposed regulation 
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Fig. 4. Simulation result without the regulation of the joint 

velocities: trajectory of the end-effector (top), joint 

velocities (bottom) 

algorithm as shown in Fig. 5. Near the boundary in the 

image plane, the end-effector has been controlled properly 

using the proposed algorithm in order to stay it within the 

view of the camera. Fig. 5. (top) shows the trajectory of the 

end-effector. In this result, we verified the efficiency for 

overcoming the visibility constraints.  
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Fig. 5. Simulation result with the proposed regulation of 

the joint velocities: trajectory of the end-effector 

(top), joint velocities (bottom) 

 

 

4. Experimental Results 

 

The proposed methods were applied on the 3DOF SNU-

ERC DD (Direct Drive) planar robot for the eye-to-hand 

configuration. However, we used only two links out of the 

three and did not consider the redundant control in order to 

simplify the problem. 

In this section, we performed experiments for two cases. 

In Section V-A, we explain the experiment that was 

performed for the algorithm to find the residual term for 

large residual. Through this experiment, we proved the 

validity of the algorithm by comparing the large residual 

case with the zero residual case. In Section V-B, the 

estimation algorithm of the image Jacobian using the affine 

model for the end-effector feature was applied. The 

experimental results for the estimation algorithm were then 
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compared with the previous works [5, 6]. Finally, we 

applied the algorithm to regulate the joint velocity using 

the adaptive parameter for visibility constraints in these 

experiments. 

The 3DOF SNU-ERC DD robot was used for testing 

these algorithms. The vision system used Teli CS6100 

CCD camera and the Meteor II frame grabber manu-

factured by Matrox in order to obtain the digital image. 

The resolution of the camera was 640×480 (1 pixel ≈ 
0.5mm). The frame grabber was installed in a Pentium II 

800MHz PC running the Windows NT 4.0 operating 

system. The sampling period was 60ms. 

The initial image Jacobian at t=0, ˆ ( )
0qJ q , was the 2x2 

identity matrix, I2. We used the value of λ = 0.5 until 

convergence was achieved and then changed the value for 

λ = 0.9. The limit of the joint velocity in (16) was chosen 

to be [1.5 1.5]T (rad/s) using the heuristic method. We had 

to consider several characteristics such as the field of view, 

kinematics, and the configuration of the robot in order to 

choose the limit of the joint velocity properly. The adaptive 

parameter for visibility constraints, γ = 0.5, W = 10-4×I2 

and fp = [320 240]
T was applied. 

The initial position of the robot end-effector for these 

experiments was set as (450, 400). For a stationary target, 

the position of the target in the image plane was (150, 150) 

pixel. For a moving target, we used a virtual moving target 

instead of the real moving target. The motion of the target 

was (320 - 200sin (2πωt) + n, 240 + 100cos (2πωt) + n) 

with an initial position at (320, 340) in the image plane. 

The angular velocity, ω (rad/s), was used to change the 
speed of the motion of the virtual moving target. The zero 

mean white Gaussian noise with variance of 4 pixels, n, 

was added to the motion of the target as the image 

processing noise. 

In this experiment, we evaluated the performance of the 

system applying the estimation algorithm of the image 

Jacobian using the affine model for the end-effector feature. 

The experimental results using the proposed algorithm 

were compared with the results using the estimation 

algorithm of the image Jacobian using the image error, that 

is, the distance between the end-effector feature and the 

target in the image plane. The experiments were performed 

for a moving target. 

For a moving target, the overall performance according 

to the motion of a moving target is shown in Fig. 6. The 

motion of the target is (320 - 200sin (2πωt) + n, 240 + 

100cos (2πωt) + n) with the initial position at (320, 340) in 

the image plane. The angular velocity, ω (rad/s), was used 
to change the speed of the motion of the moving target.  

As shown in Fig. 6(a), as the angular velocity is increased, 

the convergence time for the estimation algorithm using the 

image error is increased exponentially, but the convergence 

time for the proposed algorithm is slightly increased. This 

is because the proposed algorithm using the end-effector 

feature is not affected by the motion of a moving target. In 

one of the definitions of the image Jacobian, the proposed 

algorithm using the end-effector feature for the estimation 

of the image Jacobian is more suitable than the estimation 

algorithm using the image error. For the average steady-

state error norm, the proposed algorithm also shows a 

better performance than the estimation algorithm using the 

image error as demonstrated in Fig. 6(b). As the angular 

velocity is increased, the average steady-state error norm is 

increased. The average steady-state error norms for the 

proposed algorithm are smaller than the average steady-

state error norms for the estimation algorithm using the 

image error. Fig. 8(b) shows that the increase of the error 

norm for the proposed algorithm is slower than the increase 
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    (a)                                                 (b) 

Fig. 6. Comparisons of the estimation of the image Jacobian between the algorithm using the image error and the algorithm 

using the end-effector feature. (a) The convergence time for tracking a moving target (b) The average steady-state 

error norm  for tracking a moving target: The motion of the target is (320-200sin (2πωt), 240+100cos (2πωt)) and 

the angular velocity of a moving target is ω. 
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of the error norm for the estimation algorithm using the 

image error. These experimental results show that the 

proposed algorithm is more efficient for tracking a moving 

target than the estimation algorithm using the image error. 

This is because the proposed algorithm for estimating the 

image Jacobian is independent of a target feature.  

Fig. 7 and 8 show the experimental results for the 

estimation algorithm using the image error and the 

estimation algorithm using the end-effector feature when 

the angular velocity is 0.3 rad/s. For the estimation 

algorithm using the image error, the convergence time is 

1.56 sec (26 iterations) and the average steady-state error 

norm is 15.6837. For the proposed algorithm, however, the 

convergence time is 0.78 sec (13 iterations) and the 

average steady-state error norm is 6.6733. 

In Fig. 7, the error norm is noisier than the error norm in 

Fig. 8. As the angular velocity of the moving target is 

increased, the image error is increased at the sample time. 

Therefore, the estimation algorithm using the image error  
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(b) 

Fig. 7. Experimental results of the estimation of the image 

Jacobian using the image error at ω = 0.3 rad/s. (a) 

Pixel error norm for tracking a moving target.; (b) 

Trajectory of the end-effector feature and the 

moving target in the image plane: the convergence 

time is 1.56 sec (26 iterations), and the average 

steady-state error is 15.6837 pixels. 

is largely affected by the angular velocity. In the proposed 

algorithm, the target feature is not used for the estimation 

of the image Jacobian. Therefore, the target feature is only 

used for the nonlinear least squares optimization method. 

The cyclic errors exist in Fig. 8(a) and the cyclic period 

is about 1.67 sec. As the angular velocity of the moving 

target is increased, the cyclic error is increased and 

becomes more apparent. These cyclic errors are produced 

by the moving target. Fig. 8(b) shows the trajectory until 

3.3 sec. The motion of the moving target at 0.834 and 2.5 

sec is decreased in the image plane because the moving 

target movies in a circular motion. Therefore, the error 

norm is decreased at ( )1 2t n π ω= + , n = 0,1,2,… . 
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(b) 

Fig. 8. Experimental results of the estimation of the image 

Jacobian using the end-effector feature at ω = 0.3 

rad/s. (a) Pixel error norm for tracking a moving 

target; (b) Trajectory of the end-effector feature and 

the moving target in the image plane: the 

convergence time is 0.78 sec (13 iterations), and the 

average steady-state error is 6.6733 pixels. 

 

 

5. Conclusion 

 

In this paper, we proposed the uncalbrated visual 

servoing algorithm. The proposed algorithm was found to 
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be efficient for tracking a moving target in eye-to-hand 

configuration. 

A nonlinear least squares optimization problem was 

defined for a calibration-free visual servo system, and the 

control system was proposed to minimize the image error. 

The Broyden’s method was used for estimating the image 

Jacobian. In order to improve the stability of the system, a 

recursive least squares (RLS) algorithm was applied. We 

assumed a large residual for the model of an objective 

function. Therefore, we proposed this method to find the 

residual term using the secant approximation method. 

We also proposed an algorithm for the estimating the 

image Jacobian using the end-effector feature. This algorithm 

is independent of the target feature, and in that respect it is 

efficient for tracking a stationary and a moving target. 

To regulate the joint velocity for safety, the method 

using the cost function using the adaptive parameter for 

visibility constraints was proposed.  

Lastly, we confirmed the validity for the proposed 

methods through experiments. We also verified that a large 

residual performs better than that of a zero residual for the 

convergence time as shown in the experimental results. 

Further, we found the estimation algorithm of the image 

Jacobian using the end-effector feature is more efficient 

than the estimation algorithm using the image error. 
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