• Title/Summary/Keyword: Unconstrained

검색결과 386건 처리시간 0.028초

Analysis of the Motion of a Cart with an Inverted Flexible Beam and a Concentrated Tip Mass

  • Park, Sangdeok;Wankyun Chung;Youngil Youm;Lee, Jaewon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.367-372
    • /
    • 1998
  • In this paper, the mathematical model of a cut with an inverted flexible beam and a concentrated tip mass was derived. The characteristic equation for calculating the natural frequencies of the cart-beam-mass system was obtained and the motion of the system was analyzed through unconstrained modal analysis. A good positioning response of the cart without excessive vibrational motion of the tip mass could be obtained through numerical simulation using PID controller with the feedback of both the position of the cart and the deflection of the beam.

  • PDF

CDMA 셀룰라 시스템에서 변동 경감 요소를 가지는 제한적 분산 전력제어 (Distributed Constrained Power Control with Non stationary Relaxation Factor in CDMA Cellular systems)

  • 오도창;이무영;이동기;허용도
    • Journal of Information Technology Applications and Management
    • /
    • 제13권4호
    • /
    • pp.291-302
    • /
    • 2006
  • The current paper proposes fast distributed constrained power control (FDCPC) with a non stationary relaxation factor as the next power update for CDMA cellular power control systems. A review is also given of unconstrained control algorithms: distributed power control (DPC), unconstrained second order power control (USOPC), and DPC with a stationary relaxation factor (DPCSRF) To improve the performance of outage probability convergence, DCPC with a non stationary relaxation factor (FDCPC) is proposed. Under constrained conditions, the convergence rate of FDCPC is shown to outperform that of DCPC and constrained second order power control(CSOPC).

  • PDF

제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감 (Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials)

  • 이두호
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

입력제약을 고려한 일반형 예측제어기법 (Generalized Predictive Control with Input Constraints)

  • 김창희;함창식;이상정;박상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1196-1198
    • /
    • 1996
  • It is well known that the controller output limits have a significant effect on the closed loop system performance. GPC has many tuning-knobs which can he used to minimize actuator activity. Especially, increasing the control weighting $\lambda$ cuts down the controller output variance. Using this property, we propose the GPC with Input constraints(GPCIC) which is based on the relation between control weighting $\lambda$ and optimal solution of the unconstrained GPC. The GPCIC algorithm is the calculation of the optimal $\lambda$ such that the output of the unconstrained GPC is satisfied with the rate Ind the level constraint.

  • PDF

Poisson Effect on Electromechanical Impedance of Unconstrained Piezoelectric Patch

  • Shin, Sung-Woo;Kwon, Oh-Heon
    • International Journal of Safety
    • /
    • 제8권2호
    • /
    • pp.26-30
    • /
    • 2009
  • In this study, the Poisson effect on resonant frequency behaviors of the unconstrained piezoelectric patch is investigated. The electromechanical impedance models for the un-bonded patch are derived from the two existing bonded patch models and numerical analysis for a given piezoelectric material is performed. From the analysis, it is found that the Poisson effect is not important as long as the electromechanical impedance model is used to predict the locations of resonant frequencies. However, Poisson effect should be considered when predicting the location of the largest resonant frequency of the patch since the amplitude responses are different with the model used.

연속 접촉 처리를 고려한 실린더 벤딩 성형 공정의 유한요소해석 (Finite Element Analysis of the Unconstrained Cylindrical Bending Process Considering Continuous Contact Treatment)

  • 김태정;양동열
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.547-552
    • /
    • 2005
  • In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. The analysis of the unconstrained cylindrical bending process without blank holder is also presented in order to investigate the effect of the proposed algorithm.

이동부하를 가지고 병진운동하는 유연보의 운동 해석 (Motion analysis of a Translating Flexible Beam Carrying a Moving Mass)

  • 박상덕;정완균;염영일
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.204-212
    • /
    • 1999
  • In this paper, the vibrational motion of a flexible beam clamped on a translating base and carrying a moving mass is investigated. The equations of motion which describe the total dynamics of the beam-mass-cart system are derived and the coupled dynamic equations are solved by unconstrained modal analysis. In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies for the position of the moving mass and the ratios of the mass of the flexible beam, the moving mass and the base cart are used. Proper transformations of the time solutions between the normal modes for a position and those for the next position of the moving mass are also adopted. Numerical simulations are carried out to obtain the open-loop responses of the system in tracking the pre-designed path of the moving mass.

  • PDF

개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계 (Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT)

  • 윤영묵;강문명;이말숙
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.21-32
    • /
    • 2004
  • 본 연구에서는 다제약 설계변수를 갖는 비선형 문제를 무제약 최소화 문제로 전환하는 축차무제약 최소화기법(SUMT)과 효과적인 강골조의 2차비탄성해석 방법 중의 하나인 개선소성힌지해석 방법을 접목시킨 평면 강골조의 연속최적설계 모델 및 프로그램을 개발하였다. 최적설계를 위한 목적함수로는 강골조물을 구성하는 모든 부재의 중량 합을, 제약조건으로는 AISC-LRFD의 휨강도, 전단강도, 압축 및 인장강도, 국부좌굴 및 부재좌굴, 그리고 단면형상 등에 관한 설계기준을 사용하였다. 본 연구에서 개발한 연속최적설계 모델을 이용하여 여러 평면 강골조의 최적설계를 수행하였으며, 최적설계 견과로부터 개발한 연속최적설계 모델의 사용성, 타당성, 효율성 및 경제성 등을 검토하였다.

순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석 (Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model)

  • 윤상석;정상기;김영은
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.