• Title/Summary/Keyword: Uncertainty in Measurement

Search Result 860, Processing Time 0.023 seconds

Skin Dose Comparison of CyberKnife and Helical Tomotherapy for Head-and-Neck Stereotactic Body Radiotherapy

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Purpose: This study conducts a comparative evaluation of the skin dose in CyberKnife (CK) and Helical Tomotherapy (HT) to predict the accurate dose of radiation and minimize skin burns in head-and-neck stereotactic body radiotherapy. Materials and Methods: Arbitrarily-defined planning target volume (PTV) close to the skin was drawn on the planning computed tomography acquired from a head-and-neck phantom with 19 optically stimulated luminescent dosimeters (OSLDs) attached to the surface (3 OSLDs were positioned at the skin close to PTV and 16 OSLDs were near sideburns and forehead, away from PTV). The calculation doses were obtained from the MultiPlan 5.1.2 treatment planning system using raytracing (RT), finite size pencil beam (FSPB), and Monte Carlo (MC) algorithms for CK. For HT, the skin dose was estimated via convolution superposition (CS) algorithm from the Tomotherapy planning station 5.0.2.5. The prescribed dose was 8 Gy for 95% coverage of the PTV. Results and Conclusions: The mean differences between calculation and measurement values were $-1.2{\pm}3.1%$, $2.5{\pm}7.9%$, $-2.8{\pm}3.8%$, $-6.6{\pm}8.8%$, and $-1.4{\pm}1.8%$ in CS, RT, RT with contour correction (CC), FSPB, and MC, respectively. FSPB showed a dose error comparable to RT. CS and RT with CC led to a small error as compared to FSPB and RT. Considering OSLDs close to PTV, MC minimized the uncertainty of skin dose as compared to other algorithms.

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.

Managing Technological Risk and Risk Conflict : Public Debates on Health Risks of Mobile Phones EMF (기술위험 관리와 위험갈등 : 휴대전화 전자파의 인체유해성 논란)

  • Jung, Byung-Kul
    • Journal of Science and Technology Studies
    • /
    • v.8 no.1
    • /
    • pp.97-129
    • /
    • 2008
  • We are living in the time of high probability of technological risk due to increased rate of technology development and diffusion of new technologies. Resolving uncertainties, the basic attribution of risk, by accumulating knowledge over the risk factors of certain technology is critical to management of technological risk. In many cases of technological risks, high uncertainty of knowledge is commonly mentioned reason for public controversies on risk management. However, the type of technological risk with low social agreement and low uncertainty of knowledge, the main reason for public controversy is absence of social agreement. Public debates on the risks of mobile phones electromagnetic fields(EMF) to human health comes under this category. The knowledge uncertainty on human health effect of mobile phones EMF has been lowered increasingly by accumulating enormous volume of knowledge though scientists have not reached a final conclusion whether it pose a risk to the physical and mental health of the general population or not. In contrast with civil organizations calling for precautionary approach based regulation, the mobile phone industry is cling to the position of no-regulation-needed by arguing no clear evidence to prove health risks of mobile phone EMF has found. In Korea, government set exposure standards based on a measurement called the 'specific absorption rate'(SAR) and require the mobile phone industry to open SAR information to the public by their own decision. From the view of pro-regulation side based on precautionary approach, technology risk managament of mobile phones EMF in Korea is highly limited and formalized one with limited measuring of SAR on head part only and problematic self-regulated opening of information about SAR to the public. As far as the government keeps having priority on protecting interest of mobile phone industry over precautionary regulation of mobile phones EMF, the disagreement between civil organizations and the government will not resolved. The risk of mobile phones EMF to human health have high probability of being underestimated in the rate and damage of risk than objectively estimated ones due to familiarity of mobile phone technology. And this can be the cause of destructive social dispute or devastating disaster. To prevent such disastrous results, technology risk management, which integrating the goals of safety with economic growth in public policy and designing and promoting risk communication, is required.

  • PDF

Effectiveness Evaluation of the Tube Voltage Measurement by using Additional Filter (부가필터를 이용한 kVp 측정의 실효성 평가)

  • Hwang, Jun-Ho;Lee, Kyung-Ho;Choi, Yoon-Bong;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • Advancement in the medical field provides an opportunity for the development of medical equipment and also enable accurate diagnosis for the inspection and the treatment of diseases. The aging of equipment due to the frequent operation produce uncertainty in the patient exposure dose, so a quality control was implemented by establishing a safety management system on a regular basis. The x-ray tube voltage (kVp), which is directly involved in the patient exposure dose and the life of the equipment, needs periodic performance for the quality control, but it has a limitation due to the time and the cost. In this study, we proposed a new method for measuring the kVp with ease by using the Y and Cu to solve the problem of the time and cost. We also evaluated the usefulness and the effectiveness of the new method and its accuracy through the kVp measurement. After securing the condition, the amount of the tube current and evaluating the usefulness and effectiveness of kVp measured using Y and Cu. The density range used was at 0.5-1.0, kVp was in the range of ${\pm}10%$, then, we recorded the change in concentration as % of Y and Cu. This experiment showed that when Cu and Y was at 75 kVp, concentration was the same, and when the kVp was changed to 65 ~ 85 %, a gradual increase in concentration to 85 ~ 110 % was noted.

External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities (고체팬텀을 이용한 국내 방사선 치료시설의 흡수선량에 대한 조사)

  • Choi, Chang-Heon;Kim, Jung-In;Park, Jong-Min;Park, Yang-Kyun;Cho, Kun-Woo;Cho, Woon-Kap;Lim, Chun-Il;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Purpose: We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. Materials and Methods: In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party’s American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Results: Most of the beams (74%) were within ${\pm}2%$ of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance (${\pm}3%$), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be ${\pm}1.5%$. Conclusion: The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

Assessment and merging technique for GPM satellite precipitation product using ground based measurement (GPM 위성 강우자료의 검증과 지상관측 자료를 통한 강우 보정 기법)

  • Baik, Jongjin;Park, Jongmin;Kim, Kiyoung;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.131-140
    • /
    • 2018
  • Precipitation is a key variable to enhance the understanding of water cycle system and secure and manage the water resources efficiently. In this study, we evaluated the feasibility of GPM precipitation datasets through comparison with the 92 ASOS sites in South Korea during 2015. Additionally, three merging techniques (i.e., Geographical Differential Analysis, Geographical Ratio Analysis, Conditional Merging) were applied to improve accuracy of precipitation by fusing the advantages from point and satellite-based datasets. The results of this study are as follows. 1) GPM dataset indicated slightly overestimation with compared ASOS dataset, especially high uncertainties in summer season. 2) Validation of three merging techniques through jackniffe cross-validation showed that uncertainty were decreased as the spatial resolution increased. Especially, conditional merging showed the best performance among three methods.

Congestion Control with Multiple Time Scale under Self-Similar Traffic (자기유사성 트래픽 조건에서 다중 시간 간격을 이용한 혼잡제어)

  • Park, Dong-Suk;Ra, Sang-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-75
    • /
    • 2005
  • Measurement of network traffic have shown that the self-similarity is a ubiquitous phenomenon spanning across diverse network environments. In previous work, we have explored the feasibility of exploiting the long-range correlation structure in a self-similar traffic for the congestion control. We have advanced the framework of the multiple time scale congestion control and showed its effectiveness at enhancing performance for the rate-based feedback control. Our contribution is threefold. First, we define a modular extension of the TCP-a function called with a simple interface-that applies to various flavours of the TCP-e.g., Tahoe, Reno, Vegas and show that it significantly improves performance. Second, we show that a multiple time scale TCP endows the underlying feedback control with proactivity by bridging the uncertainty gap associated with reactive controls which is exacerbated by the high delay-bandwidth product in broadband wide area networks. Third, we investigate the influence of the three traffic control dimensions-tracking ability, connection duration, and fairness-on performance.

Design of Total RMS(Radiation Monitoring System) for nuclear and nuclear medicine (원자력 및 핵의학 분야용 Total RMS (Radiation Monitoring System)의 설계)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.158-161
    • /
    • 2017
  • In this paper, we propose Total RMS(Radiation Monitoring System) for nuclear and nuclear medicine. The proposed system can expand and control Stack Monitor, Area Monitor, and Water(Liquid) Monitor into one system, and can monitor the signals measured by each radiation detector in an integrated manner. The proposed system consists of a sensor module that detects the radiation, a display unit that displays the radiation dose near the radiation detection location, an alarm unit that reports the alarm when the detected radiation dose reaches the danger level, A Main Hub for collecting and storing the contents to the remote monitoring system, and an RMS Monitoring Unit for clearly displaying the measured radiation dose at the remote site. In order to evaluate the performance of Total RMS for the proposed nuclear and nuclear medicine field, it is confirmed that the measurement uncertainty is less than 8.5% and it operates normally within ${\pm}15%$ of the international standard.

An Experimental Study on Magnus Characteristics of a Spinning Projectile at High Speed Region (회전발사체 마그너스 특성에 관한 고속 유동장 실험연구)

  • Oh, Se-Yoon;Lee, Do-Kwan;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.385-390
    • /
    • 2011
  • The purpose of this research is to determine the dynamic Magnus effect data of a spinning projectile in wind-tunnel testing. In the present work, the high-speed wind-tunnel tests for the Magnus effect measurements were conducted on a 155-mm spin-stabilized projectile model in the Agency for Defense Development's Tri-Sonic Wind Tunnel at spin rates about 12,000 rpm. The test Mach numbers ranged from 0.7 to 2.0, and the angles of attack ranged from -4 to +10 deg. The validity of the wind-tunnel measurement techniques was evaluated by comparing them with the previous test results on the same configuration. The experimental results show that fair to good agreement is obtained with resonable accuracy.

Policy Evaluation of the Government Financial Transfers to Korean Fisheries : LISREL Approach (수산부문 정부재정지원정책의 정성 평가)

  • 박성쾌;김정봉
    • The Journal of Fisheries Business Administration
    • /
    • v.33 no.2
    • /
    • pp.1-29
    • /
    • 2002
  • The main objective of this research aims at analyzing efficiency of government financial transfers(GFTs) to the Korean fisheries sector, using the Linear Structural Relations model(i.e., LISERL model) and the field survey data. Most policies of GFTs tend to be implemented to protect industries with weak competitive advantages such as infant and/or primary industries. Specific policy instruments include income transfers, government loans with lower interest rates, taxes and the like. Fishing activities are made at a highly changeable natural environment of the ocean with a great amount of risk and uncertainty. Fishing households make their livelihood under the small-scale fisheries. Such fisheries and fishing households have also a relatively weak market power. Because of these fisheries characteristics most coastal states have adopted a variety of government support programs. However, despite such a huge government support, during the past several decades the world fishing communities have seen a tendency of continuous fishereis resource overexploitation. For this resason there have been hot debates over the government support policies for fisheries through OECD, FAO, WTO, and UNEP. In general, policy evaluations tend to be made on the basis of benefit-cost(B/C) analysis. However, the B/C analysis may produce results quite different from real ones primarily due to many unmeasurable effects. Thus, the authors composed simple questionaires and let fishermen, government officials and academic people answer the questions. The survery was made in several ways such as post-mail and personal/group interviews. In recent years, for analysis of policy performances and effectiveness, the LISREL model has often been used, which consists of structural and measurement eqquations. This model has a good advantage of transforming unobservable variables to observable ones so that it helps construct endogenous cause and effect relationships among relevant variables. The evaluation was done from the two aspects: policy results and policy effectiveness. The policy result evaluation showed that there is a need for improvement for policy problem perception and decision-making process, while the policy effect evaluation suggested that the policy goals were successfully achieved and social justice was improved from the perspective of the entire society as well. However, the research results showed that the GFT policies rendered little contrubtion to narrowing down the gap between GFT beneficiaries and non-beneficiaries incomes.

  • PDF