• Title/Summary/Keyword: Uncertainty evaluation

Search Result 894, Processing Time 0.03 seconds

Performance Characteristics of Thrust Measurement System for Hot-Firing Test of Small Liquid Propulsion Engines (소형 액체 추진기관 연소 시험을 위한 추력 측정 장치의 성능 특성 연구)

  • Kim, In-Tae;Huh, Hwan-Il;Kim, Jeong-Soo;Jang, Ki-Won;Lee, Jae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.122-129
    • /
    • 2004
  • An accurate thrust measurement is one of the critical paths to the successful test and evaluation program of small liquid propulsion engines. This study describes the design factors for the development of thrust measurement system (TMS) as well as manufacturing practice of TMS hardware. We investigate characteristics of the TMS and its performance through hot-firing test of small liquid engine in a vacuum test cell which is capable of simulating 100,000 ft of altitude or higher. For performance test of TMS, we measure thrusts by changing propellant injection pressure at steady state firing mode as well as at pulse firing mode. Measured eigen frequency of the TMS is 67 Hz. Linearity test of the TMS shows good performance with less than 0.5% of linearity error.

Evaluation of Application to Pre-Developed Delivery Load Equation at Upper Watershed of the Daechung Reservoir (대청호 상류유역의 기 개발된 유달부하량 산정식의 적용성 평가)

  • Lee, Jun-Bae;Kim, Kap-Soon;Lee, Kyu-Seung;Yoon, Young-Sam;Lim, Byung-Jin;Jung, Jae-Woon
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • BACKGROUND: To improve the Daechung reservoir water quality, a quantitative estimation of the delivery load from upper watershed need to be conducted prior to others. To do so, an intensive monitoring is necessary because of the complexity and uncertainty of the delivery load from uppper watershed. However, intensive monitoring need to invest much time, cost, and effort. So, many researcher have developed an equation to estimate the delivery loads. But, relatively little research has been conducted on the applicability of pre-developed equation using other sites. Therefore, the objective of this study was to evaluate application of the equation for BOD, T-N and T-P delivery load. METHODS AND RESULTS: To verify the applicability of the equation, the following equation was used; Delivery loads(kg/day)=generated pollutant loads${\times}(1-{\alpha}){\times}$(daily outflow/${\beta})^{\gamma}$. The equations could be calculated the daily delivery loads of streams without any data of water quality, only with the data of daily runoff of study sites. The equations were applied to Youngdogcheon, Chogangcheon, Bocheongcheon, Sookcheon to examine its applicability using monitoring data. The results showed that the estimated delivery loads were in a good agreement with the observed data and indicated reasonable applicability of the equations. CONCLUSION(s): Overall, the equations were satisfactory in estimation of delivery loads at upper watershed of the Daechung reservoir. Therefore, the equations could be contributed to better water quality management in the Daechung reservoir.

CCDP Evaluation of the Eire Areas in NPP Applying CEAST Model (II) (화재모델 CFAST를 이용한 원전 화재구역의 CCDP평가(II))

  • Lee Yoon-Hwan;Yang Joon-Eon;Kim Jong-Hoon;Kim Woon-Byung
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.20-27
    • /
    • 2005
  • This paper evaluates the fire safety level of eight pump rooms in the nuclear power plant using a fire model, CFAST We estimate the Conditional Core Damage Probability (CCDP) of each room based on the analyzed results of CFAST Eight rooms located on the primary auxiliary building of the nuclear power plant are high pressure safety injection pump room A/B, low pressure safety injection pump room Am. containment sprdy pump room A/B, and motor-driven auxiliary feed water pump room A/B. The upper layer gas temperature of each room is estimated and the integrity of cable is reviewed. Based on the results, the integrity of the cable located at the upper part of compartment is maintained without thermal damage. The Conditional Core Damage Probability Is reduced to half of the old values. Accordingly, the fire safety assessment for eight pump rooms using the fire model will be capable of reducing the uncertainty and to develop a more realistic model.

Comparison the reference ion chamber in using the radioactive check source and field ion chamber for output dose for Co-60 source of remote afterloading system (시험선원을 이용한 기준 전리함의 감도변화와 임상필드전리함의 성능 안정성 비교)

  • 최태진
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.141-146
    • /
    • 2001
  • It is well known that assurance of the radiation therapy needs for an accuracy of $\pm$ 5 % in the delivery of an absorbed dose to target volume. Therefore, the dose evaluation of brachytherapy source and/or linear accelerate beam must be a stability with accuracy. In an advanced country, they recommended to use the radioactive check source for reference air ionization chamber for a stable response of radiation field chamber. In this experiments, the radioactive source Sr-90 and PR-05 air ionization chamber were used for standard source and reference ion chamber. The response of reference ion chamber showed as an 1.000$\pm$ 0.010 uncertainty for 10 years long and the evaliuation f dose discrepancy of clinical field ion chamber showed as 0.997 $\pm$0.011 in a $^{60}$ Co brachytherapy soruce. In our experiments, we can assuarance the long halflife standard source is reliable to preserve the calibration factor of reference chamber in stability.

  • PDF

Development of an Arctic Tanker Design (극지용 쇄빙 유조선 개발)

  • Kim, Hyun-Soo;Ha, Mun-Keun;Ahn, Dang;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.20-29
    • /
    • 2003
  • When Arctic offshore development in the 1970's first led to the consideration of ice capable tankers, there was a high level of uncertainty over design requirements for both safety and ship performance. Also here was a lack of reliable methods to evaluate design proposals. Since that time, improved understanding of the ice environment has raised the confidence of design specifications. Parallel developments have resulted in a suite of engineering tools for ship performance evaluation at the design stage Recent development of offshore and near shore oil and gas reserves in several countries together with economic studies of increased transportation through the Russian Arctic has newly introduced the interest in ice capable tanker design. in response, Samsung Heavy Industries (SHI) applied its experience in tanker design and construction to the design of a specialized tanker with ice capability. SHI produced two prototype hull designs for further study. The performance of both hulls and of the propellers was evaluated at the Institute for Marine Dynamics (IMD) in St. John's, Newfoundland This paper discusses the development of the design, describes the model experiments to determine performance and variations, and presents the results.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Comparative Evaluation of QUAL2E and QUAL-NIER Models for Water Quality Prediction in Eutrophic River (부영양 하천의 수질예측을 위한 QUAL2E와 QUAL-NIER 모델의 비교·평가)

  • Choi, Jungkyu;Chung, Sewoong;Ryoo, Jaeil
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • It is often believed that a more complex water quality model is better able to simulate reality. The more complex a model, however, the more parameters are involved thus increases the cost and uncertainty of modeling processes. The objective of this study was to compare the performance of two steady-state river water quality models, QUAL2E and QUAL-NIER, that have different complexity. QUAL-NIER is recently developed by National Institute of Environmental Research aiming to enhance the simulation capability of QUAL2E for eutrophic rivers. It is a carbon based model that considers different forms, such as dissolved versus particulate and labile versus refractory, of carbon and nutrients, and the contribution of autochthonous loading due to algal metabolism. The models were simultaneously applied to Nakdong River and their performance was evaluated by statistical verification with field data. Both models showed similar performance and satisfactorily replicated the longitudinal variations of BOD, T-N, T-P, Chl.a concentrations along the river. The algal blooms occurred at the stagnant reaches of downstream were also reasonably captured by the models. Although QUAL-NIER somewhat reduced the magnitude of errors, the hypothesis tests revealed no statistical evidence to justify its better performance. The contribution of autochthonous carbon and nutrient load by algal metabolism was insignificant because the hydraulic retention time is relatively short compare to the time scale of kinetic reactions. The results imply that the kinetic processes included in QUAL-NIER are too complex for the nature and scale of the real processes involved, thus needs to be optimized for improving the modeling efficiency.

A Development of Hydrologic Dam Risk Analysis Model Using Bayesian Network (BN) (Bayesian Network (BN)를 활용한 수문학적 댐 위험도 해석 기법 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.781-791
    • /
    • 2015
  • Dam risk analysis requires a systematic process to ensure that hydrologic variables (e.g. precipitation, discharge and water surface level) contribute to each other. However, the existing dam risk approach showed a limitation in assessing the interdependencies across the variables. This study aimed to develop Bayesian network based dam risk analysis model to better characterize the interdependencies. It was found that the proposed model provided advantages which would enable to better identify and understand the interdependencies and uncertainties over dam risk analysis. The proposed model also provided a scenario-based risk evaluation framework which is a function of the failure probability and the consequence. This tool would give dam manager a framework for prioritizing risks more effectively.

Simulation of Unsaturated Fluid Flow on the 2nd Phase Facility at the Wolsong LILW Disposal Center (경주 중저준위방폐장 2단계 처분시설의 불포화 환경하에서 침투수 유동 해석)

  • Ha, Jaechul;Lee, Jeonghwan;Yoon, Jeonghyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2017
  • This study was conducted to predict and evaluate the uncertainty of safety after closure of the second phase surface disposal facility of the Gyeongju intermediate and low level repository in Korea. In this study, four scenarios are developed considering both intact and degraded states of multi-layered covers and disposal containers; also, the fluid flow by a rainfall into the disposal facility is simulated. The rainfall conditions are implemented based on the monthly average data of the past 30 years (1985~2014); the simulation period is 300 years, the management period regulated by institutional provisions. As a result of the evaluation of the basic scenario, in which the integrity of both of the containers and the covers is maintained, it was confirmed that penetration of rainfall does not completely saturate the inside of the disposal facility. It is revealed that the multiple cover layers and concrete containers effectively play the role of barrier against the permeation of rainfall.

Probabilistic Analysis for Stability Evaluation of Landslides Using Geo-spatial Information (지형공간 정보를 활용한 산사태 안정평가의 확률론적 해석)

  • Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.55-62
    • /
    • 2006
  • The purpose of the current research is to evaluate the possibility of landslides by using geo-spatial information system. Geological information has been summarized and stability analysis for infinite slopes has been conducted based on the force equilibrium. In addition, the analysis of landslides was performed based on probabilistic approach by using probabilistic variables which can include uncertainty of input parameters. For the purpose of testifing the applicability of the analysis method actual geological data from a construction site was obtained, thereby performing both a preliminary analysis for a large area and detailed analysis for a better result. As a result of the current analysis several issues such as the possibility of development of landslides, detailed analysis of where landslides are most likely to be developed were analysed by using two concepts of safety and index of failure probability.

  • PDF