• Title/Summary/Keyword: Uncertainty estimation

Search Result 753, Processing Time 0.02 seconds

An Interval Algebra-based Modeling and Routing Method in Bus Delay Tolerant Network

  • Wang, Haiquan;Ma, Weijian;Shi, Hengkun;Xia, Chunhe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1376-1391
    • /
    • 2015
  • In bus delay-tolerant networks, the route of bus is determinate but its arrival time is indeterminate. However, most conventional approaches predict future contact without considering its uncertainty, which makes a limitation on routing performance. A novel approach is proposed by employing interval algebra to characterize the contact's uncertainty and time-varying nature. The contact is predicted by using the Bayesian estimation to achieve a better routing performance. Simulation results show that this approach achieves a good balance between delivery latency and delivery ratio.

Robust State Estimation Based on Sliding Mode Observer for Aeroelastic System

  • Jeong In-Joo;Na Sungsoo;Kim Myung-Hyun;Shim Jae-Hong;Oh Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.540-548
    • /
    • 2005
  • This paper concerns the application and demonstration of sliding mode observer for aeroelastic system, which is robust to model uncertainty including mass and stiffness of the system and various disturbances. The performance of a sliding mode observer is compared with that of a conventional Kalman filter to demonstrate robustness and disturbance decoupling characteristics. Aeroelastic instability may occur when an elastic structure is moving even in subcritical flow speed region. Simulation results using sliding mode observer are presented to control aeroelastic response of flapped wing system due to various external excitations as well as model uncertainty and sinusoidal disturbances in subcritical incompressible flow region.

Technical and Financial evaluation for mineral project (광물자원 프로젝트의 기술성 및 경제성 평가 기법)

  • Cho, Seong-Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.101-118
    • /
    • 2009
  • In order to invest in overseas mineral projects, it is necessary to have a ability of technical and financial evaluation. Reserve estimation is the most important for mineral appraisal. Geostatistical evaluation of tonnage and grade promises more accurate reserve estimation than traditional methods such as polygon, inverse distance method and so on even if it has some uncertainty. Selection of a mining method and a mineral processing is also important because capex and opcosts of a mineral project is due to the selection. Mineral project is usually evaluated financially using NPV and IRR which are calculated through DCF(Discount Cash Flow). Uncertainty of a mineral project is analyzed statistically using sensitivity analysis and montecarlo simulation.

  • PDF

Identification of Interval Model for Parametric Uncertain Systems (파라미터 불확실성 시스템의 구간모델 식별)

  • 김동형;우영태;김영철
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.462-470
    • /
    • 2003
  • This paper presents an algorithm of identifying parametric uncertainty by way of an interval model. For a given set of frequency response data from an uncertain linear SISO system of which the upper and the lower bounds of both magnitude and phase responses are represented, the proposed algorithm consists of two main parts: first, the nominal model is identified by using Least Square Estimation (LSE), and then an interval model is constructed by expanding the extremal properties of interval systems, so that tightly enclose the given envelopes within those of interval model. Two numerical examples are given to demonstrate and verify the developed algorithm. The identified interval model can be used for evaluating the worst case performance and stability margins against parametric uncertainty by using some extremal properties on interval systems.

Back Analysis of Tunnel for multi-step Construction (시공 단계를 고려한 터널의 역해석에 관한 연구)

  • 김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.479-484
    • /
    • 2000
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design tunnel safely and economically. Therefore, the back analysis using the field measurements data is useful to evaluate the geotechnical parameter for tunnel. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. In this paper, to overcome uncertainty of field measurements, we performed the back analysis using the displacement data gained at each step of excavation and support.

  • PDF

Comparison of EM with Jackknife Standard Errors and Multiple Imputation Standard Errors

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1079-1086
    • /
    • 2005
  • Most discussions of single imputation methods and the EM algorithm concern point estimation of population quantities with missing values. A second concern is how to get standard errors of the point estimates obtained from the filled-in data by single imputation methods and EM algorithm. Now we focus on how to estimate standard errors with incorporating the additional uncertainty due to nonresponse. There are some approaches to account for the additional uncertainty. The general two possible approaches are considered. One is the jackknife method of resampling methods. The other is multiple imputation(MI). These two approaches are reviewed and compared through simulation studies.

  • PDF

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass I - Estimation of peak blasting pressure - (암반에 전달된 밀장전 발파압력의 확률론적 예측 I - 최대 발파압력 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.337-348
    • /
    • 2003
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. The blasting pressure was a function of detonation velocity, isentropic exponent, explosive density, Hugoniot parameters, and rock density. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from the above mentioned properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties. In other words, since rock property uncertainty is much larger than detonation velocity uncertainty the blasting pressure uncertainty is more influenced by the former than by the latter even though the detonation velocity is found to be the most influencing parameter on the blasting pressure.

  • PDF

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

Reliability-Based Design Optimization Considering Variable Uncertainty (설계변수의 변동 불확실성을 고려한 신뢰성 기반 최적설계)

  • Lim, Woochul;Jang, Junyong;Kim, Jungho;Na, Jongho;Lee, Changkun;Kim, Yongsuk;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.649-653
    • /
    • 2014
  • Although many reliability analysis and reliability-based design optimization (RBDO) methods have been developed to estimate system reliability, many studies assume the uncertainty of the design variable to be constant. In practice, because uncertainty varies with the design variable's value, this assumption results in inaccurate conclusions about the reliability of the optimum design. Therefore, uncertainty should be considered variable in RBDO. In this paper, we propose an RBDO method considering variable uncertainty. Variable uncertainty can modify uncertainty for each design point, resulting in accurate reliability estimation. Finally, a notable optimum design is obtained using the proposed method with variable uncertainty. A mathematical example and an engine cradle design are illustrated to verify the proposed method.

Measurement Uncertainty of Nitrous Oxide Concentrations from a Upland Soil Measured by an Automated Open Closed Chamber Method (밭토양에서 폐쇄형 자동 챔버법으로 측정한 아산화질소 농도에 대한 측정 불확도)

  • Ju, Ok Jung;Kang, Namgoo;Lim, Gap June
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • BACKGROUND: The closed chamber method is the most commonly used for measuring greenhouse gas emissions from upland fields. This method has the advantages of being simple, easily available and economical. However, uncertainty estimation is essential for accurate assessment of greenhouse gas emissions and verification of emission reductions. The nitrous oxide emissions from upland field is very important for the nitrogen budget in the agriculture sectors. Although assessment of uncertainty components affecting nitrous oxide emission from upland field is necessary to take account of dispersion characteristics, research on these uncertainty components is very rare to date. This study aims at elucidation of influencing factors on measurement uncertainty of nitrous oxide concentrations measured by an automated open closed chamber method from upland field. METHODS AND RESULTS: The nitrous oxide sampling system is located in the upland field in Gyeonggi-do Agricultural Research and Extension Services (37°13'22"N, 127°02'22"E). The primary measurement uncertainty components influencing nitrous oxide concentrations (influencing factors) investigated in this research are repeatability, reproducibility and calibration in the aspects of nitrous oxide sampling and analytical instrumentation. The magnitudes of the relative standard uncertainty of each influencing factor are quantified and compared. CONCLUSION: Results of this study show what influencing factors are more important in determination of nitrous oxide concentrations measured using the automated open closed chambers located in the monitoring site. Quantifying the measurement uncertainty of the nitrous oxide concentrations in this study would contribute to improving measurement quality of nitrous oxide fluxes.