• Title/Summary/Keyword: Uncertainty Avoid

Search Result 71, Processing Time 0.022 seconds

A Two-stage Stochastic Programming Model for Optimal Reactive Power Dispatch with High Penetration Level of Wind Generation

  • Cui, Wei;Yan, Wei;Lee, Wei-Jen;Zhao, Xia;Ren, Zhouyang;Wang, Cong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The increasing of wind power penetration level presents challenges in classical optimal reactive power dispatch (ORPD) which is usually formulated as a deterministic optimization problem. This paper proposes a two-stage stochastic programming model for ORPD by considering the uncertainties of wind speed and load in a specified time interval. To avoid the excessive operation, the schedule of compensators will be determined in the first-stage while accounting for the costs of adjusting the compensators (CACs). Under uncertainty effects, on-load tap changer (OLTC) and generator in the second-stage will compensate the mismatch caused by the first-stage decision. The objective of the proposed model is to minimize the sum of CACs and the expected energy loss. The stochastic behavior is formulated by three-point estimate method (TPEM) to convert the stochastic programming into equivalent deterministic problem. A hybrid Genetic Algorithm-Interior Point Method is utilized to solve this large-scale mixed-integer nonlinear stochastic problem. Two case studies on IEEE 14-bus and IEEE 118-bus system are provided to illustrate the effectiveness of the proposed method.

Advanced Relative Localization Algorithm Robust to Systematic Odometry Errors (주행거리계의 기구적 오차에 강인한 개선된 상대 위치추정 알고리즘)

  • Ra, Won-Sang;Whang, Ick-Ho;Lee, Hye-Jin;Park, Jin-Bae;Yoon, Tae-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.931-938
    • /
    • 2008
  • In this paper, a novel localization algorithm robust to the unmodeled systematic odometry errors is proposed for low-cost non-holonomic mobile robots. It is well known that the most pose estimators using odometry measurements cannot avoid the performance degradation due to the dead-reckoning of systematic odometry errors. As a remedy for this problem, we tty to reflect the wheelbase error in the robot motion model as a parametric uncertainty. Applying the Krein space estimation theory for the discrete-time uncertain nonlinear motion model results in the extended robust Kalman filter. This idea comes from the fact that systematic odometry errors might be regarded as the parametric uncertainties satisfying the sum quadratic constrains (SQCs). The advantage of the proposed methodology is that it has the same recursive structure as the conventional extended Kalman filter, which makes our scheme suitable for real-time applications. Moreover, it guarantees the satisfactoty localization performance even in the presence of wheelbase uncertainty which is hard to model or estimate but often arises from real driving environments. The computer simulations will be given to demonstrate the robustness of the suggested localization algorithm.

An attitude control of stabilizing system using indirect adaptive fuzzy control

  • Kim, Jae-Hoon;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1318-1326
    • /
    • 2014
  • The purpose of a tracking control system is to track a moving target and to find the exact information of the target. If the platform of the tracking control system is equipped on a moving vehicle such as a ship, the tracking control system will treat even the additional platform motion. In order to avoid the complexity comprising the tracking control system, a process to treat the platform motion, named stabilizing system, must be separated from the tracking control system. In this paper, a method to comprise an attitude control system for the platform stabilization is proposed using an adaptive fuzzy control which is applicable to the system with structural and parametric uncertainty. The suggested adaptive fuzzy control algorithm is the 2nd/1st-type indirect adaptive fuzzy control algorithm using the advantages of 1st-type and 2nd-type indirect adaptive fuzzy control algorithm. Several experiments using the implemented stabilizing system are executed for verifying the effectiveness of the suggested method.

An Improved Analytic Model for Power System Fault Diagnosis and its Optimal Solution Calculation

  • Wang, Shoupeng;Zhao, Dongmei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 2018
  • When a fault occurs in a power system, the existing analytic models for the power system fault diagnosis could generate multiple solutions under the condition of one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or an alarm or alarms of these PRs and/or CBs failing. Therefore, this paper presents an improved analytic model addressing the above problem. It takes into account the interaction between the uncertainty involved with PR operation and CB tripping and the uncertainty of the alarm reception, which makes the analytic model more reasonable. In addition, the existing analytic models apply the penalty function method to deal with constraints, which is influenced by the artificial setting of the penalty factor. In order to avoid the penalty factor's effects, this paper transforms constraints into an objective function, and then puts forward an improved immune clonal multi-objective optimization algorithm to solve the optimal solution. Finally, the cases of the power system fault diagnosis are served for demonstrating the feasibility and efficiency of the proposed model and method.

Quantitative risk assessment for wellbore stability analysis using different failure criteria

  • Noohnejad, Alireza;Ahangari, Kaveh;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.281-293
    • /
    • 2021
  • Uncertainties in geomechanical input parameters which mainly related to inappropriate data acquisition and estimation due to lack of sufficient calibration information, have led wellbore instability not yet to be fully understood or addressed. This paper demonstrates a workflow of employing Quantitative Risk Assessment technique, considering these uncertainties in terms of rock properties, pore pressure and in-situ stresses to makes it possible to survey not just the likelihood of accomplishing a desired level of wellbore stability at a specific mud pressure, but also the influence of the uncertainty in each input parameter on the wellbore stability. This probabilistic methodology in conjunction with Monte Carlo numerical modeling techniques was applied to a case study of a well. The response surfaces analysis provides a measure of the effects of uncertainties in each input parameter on the predicted mud pressure from three widely used failure criteria, thereby provides a key measurement for data acquisition in the future wells to reduce the uncertainty. The results pointed out that the mud pressure is tremendously sensitive to UCS and SHmax which emphasize the significance of reliable determinations of these two parameters for safe drilling. On the other hand, the predicted safe mud window from Mogi-Coulomb is the widest while the Hoek-Brown is the narrowest and comparing the anticipated collapse failures from the failure criteria and breakouts observations from caliper data, indicates that Hoek-Brown overestimate the minimum mud weight to avoid breakouts while Mogi-Coulomb criterion give better forecast according to real observations.

Routing of ALVs under Uncertainty in Automated Container Terminals (컨테이너 터미널의 불확실한 환경 하에서의 ALV 주행 계획 수립방안)

  • Kim, Jeongmin;Lee, Donggyun;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • An automated lifting vehicle(ALV) used in an automated container terminal is a type of unmanned vehicle that can self-lift a container as well as self-transport it to a destination. To operate a fleet of ALVs efficiently, one needs to be able to determine a minimum-time route to a given destination whenever an ALV is to start its transport job. To find a route free from any collision or deadlock, the occupation time of the ALV on each segment of the route should be carefully scheduled to avoid any such hazard. However, it is not easy because not only the travel times of ALVs are uncertain due to traffic condition but also the operation times of cranes en route are not predicted precisely. In this paper, we propose a routing method based on an ant colony optimization algorithm that takes into account these uncertainties. The result of simulation experiment shows that the proposed method can effectively find good routes under uncertainty.

A Study on the Seller's Right to Cure in the Int'l Sale of Goods (국제물품매매계약(國際物品賣買契約)에서 하자보완권(瑕疵補完權)에 관한 고찰(考察))

  • Ha, Kang-Hun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.12
    • /
    • pp.253-276
    • /
    • 1999
  • CISG articles 34 and 37 clearly allow the seller to cure any nonconformity in documents of sale or performance prior to the date for delivery if it does not cause the buyer unreasonable inconvenience or unreasonable expense. CISG article 48 allows a seller to cure the performance even after the date for delivery if it does not cause the buyer unreasonable delay, unreasonable inconvenience or unreasonable uncertainty of reimbursement by the seller of expenses advanced by the buyer. The wording any failure to perform is broad enough to include a delay. The seller's right to cure relates to all his obligations. The seller may remedy 'any failure to perform his obligations'. This language is broad enough to include a defect in documents. In some cases the fact that the seller is able and willing to remedy the non-conformity of the goods without inconvenience to the buyer, may mean that there would be no fundamental breach unless the seller failed to remedy the non-conformity within an appropriate time. It cannot generally be said what unreasonable inconvenience means. This can only be decided on a case-by-case basis. The seller must bear the costs involved in remedying a failure to perform. The curing of a failure to perform may have influence on the amount of the damage claimed. Insofar as the seller has the right to cure, the buyer is in that case obliged to accept the cure. If he refuses to do so, he can neither avoid the contract nor declare a reduction in price. This rule clearly shows the underlying concept of the CISG, to keep to the contract, if possible. Should the buyer requires delivery of substitute goods and the seller offers repair, it depends on the expense each case. The buyer must receive the request or notice by the seller. The relationship between the seller's right to cure and the buyer's right to avoid the contract is unclear. The buyer's right to avoid the contract should not nullify the seller's right to cure if the offer is reasonable. In addition, whether a breach is fundamental should be decided in the right of the seller's offer to cure.

  • PDF

The division of action situation of collision avoidance in intelligent collision avoidance system

  • Zheng, Zhongyi;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.114-119
    • /
    • 2001
  • Based on tole investigation on mariner’s behaviors in collision avoidance, actuality of collision avoidance at sea and the research on the uncertainty of collision avoidance behaviors adopted by two encounter vessels, and for the purpose to reduce the no-coordination action of collision avoidance between two encounter vessels, and on the base of different encounter situation in international convention for preventing collisions at sea, the concept of action situation between tee encounter vessels is proposed, and the directions for every encounter vessel to adopt course alteration to avoid collision are explained in different action situation. The mechanism of avoidance and reduction of no-coordination is established in intelligent collision avoidance system, and it is important id research on intelligent collision avoidance system.

  • PDF

Mobile Robot Obstacle Avoidance using Visual Detection of a Moving Object (동적 물체의 비전 검출을 통한 이동로봇의 장애물 회피)

  • Kim, In-Kwen;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.212-218
    • /
    • 2008
  • Collision avoidance is a fundamental and important task of an autonomous mobile robot for safe navigation in real environments with high uncertainty. Obstacles are classified into static and dynamic obstacles. It is difficult to avoid dynamic obstacles because the positions of dynamic obstacles are likely to change at any time. This paper proposes a scheme for vision-based avoidance of dynamic obstacles. This approach extracts object candidates that can be considered moving objects based on the labeling algorithm using depth information. Then it detects moving objects among object candidates using motion vectors. In case the motion vectors are not extracted, it can still detect the moving objects stably through their color information. A robot avoids the dynamic obstacle using the dynamic window approach (DWA) with the object path estimated from the information of the detected obstacles. The DWA is a well known technique for reactive collision avoidance. This paper also proposes an algorithm which autonomously registers the obstacle color. Therefore, a robot can navigate more safely and efficiently with the proposed scheme.

  • PDF

Formation Control for Unmanned Surface Vessels Using Lyapunov Redesign Method (Lyapunov 재설계 방법을 이용한 무인 수상정의 군집 제어)

  • Woo, Sangbum;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.363-369
    • /
    • 2014
  • In this paper, a practical controller for a group of USVs is proposed in order to avoid matrix inversion problems in computation. Using nonlinear mapping, a formation composed of nonholonomic agents can be stabilized even when the formation is stationary. Since there is no matrix inversion in computing the control law, the computation complexity can be resolved. A controller for stabilizing the formation errors in the presence of model uncertainty is considered using the Lyapunov redesign method. The asymptotic stability of the formation errors is shown. It is also shown that the proposed controller can be applied to guide a formation to a different shape without modification.