• Title/Summary/Keyword: Uncertain information

Search Result 636, Processing Time 0.023 seconds

High Utility Itemset Mining over Uncertain Datasets Based on a Quantum Genetic Algorithm

  • Wang, Ju;Liu, Fuxian;Jin, Chunjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3606-3629
    • /
    • 2018
  • The discovered high potential utility itemsets (HPUIs) have significant influence on a variety of areas, such as retail marketing, web click analysis, and biological gene analysis. Thus, in this paper, we propose an algorithm called HPUIM-QGA (Mining high potential utility itemsets based on a quantum genetic algorithm) to mine HPUIs over uncertain datasets based on a quantum genetic algorithm (QGA). The proposed algorithm not only can handle the problem of the non-downward closure property by developing an upper bound of the potential utility (UBPU) (which prunes the unpromising itemsets in the early stage) but can also handle the problem of combinatorial explosion by introducing a QGA, which finds optimal solutions quickly and needs to set only very few parameters. Furthermore, a pruning strategy has been designed to avoid the meaningless and redundant itemsets that are generated in the evolution process of the QGA. As proof of the HPUIM-QGA, a substantial number of experiments are performed on the runtime, memory usage, analysis of the discovered itemsets and the convergence on real-life and synthetic datasets. The results show that our proposed algorithm is reasonable and acceptable for mining meaningful HPUIs from uncertain datasets.

An Alternative State Estimation Filtering Algorithm for Temporarily Uncertain Continuous Time System

  • Kim, Pyung Soo
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.588-598
    • /
    • 2020
  • An alternative state estimation filtering algorithm is designed for continuous time systems with noises as well as control input. Two kinds of estimation filters, which have different measurement memory structures, are operated selectively in order to use both filters effectively as needed. Firstly, the estimation filter with infinite memory structure is operated for a certain continuous time system. Secondly, the estimation filter with finite memory structure is operated for temporarily uncertain continuous time system. That is, depending on the presence of uncertainty, one of infinite memory structure and finite memory structure filtered estimates is operated selectively to obtain the valid estimate. A couple of test variables and declaration rule are developed to detect uncertainty presence or uncertainty absence, to operate the suitable one from two kinds of filtered estimates, and to obtain ultimately the valid filtered estimate. Through computer simulations for a continuous time aircraft engine system with different measurement memory lengths and temporary model uncertainties, the proposed state estimation filtering algorithm can work well in temporarily uncertain as well as certain continuous time systems. Moreover, the proposed state estimation filtering algorithm shows remarkable superiority to the infinite memory structure filtering when temporary uncertainties occur in succession.

Traffic Engineering with Segment Routing under Uncertain Failures

  • Zheng, Zengwei;Zhao, Chenwei;Zhang, Jianwei;Cai, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2589-2609
    • /
    • 2021
  • Segment routing (SR) is a highly implementable approach for traffic engineering (TE) with high flexibility, high scalability, and high stability, which can be established upon existing network infrastructure. Thus, when a network failure occurs, it can leverage the existing rerouting methods, such as rerouting based on Interior Gateway Protocol (IGP) and fast rerouting with loop-free alternates. To better exploit these features, we propose a high-performance and easy-to-deploy method SRUF (Segment Routing under Uncertain Failures). The method is inspired by the Value-at-Risk (VaR) theory in finance. Just as each investment risk is considered in financial investment, SRUF also considers each traffic distribution scheme's risk when forwarding traffic to achieve optimal traffic distribution. Specifically, SRUF takes into account that every link may fail and therefore has inherent robustness and high availability. Also, SRUF considers that a single link failure is a low-probability event; hence it can achieve high performance. We perform experiments on real topologies to validate the flexibility, high-availability, and load balancing of SRUF. The results show that when given an availability requirement, SRUF has greater load balancing performance under uncertain failures and that when given a demand requirement, SRUF can achieve higher availability.

Network based Control Systems with Uncertain Time Delay using Model Matching and Pade Approximation

  • Cho, Hyun-Cheol;Kim, Kwan-Hyung;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.988-991
    • /
    • 2010
  • This paper presents a control design for networked control systems (NCS) with uncertain time delay using model matching. The dynamics of the time delay are approximated through the Pade linearization and the uncertain delay term is recursively estimated by the recursive least square (LS) algorithm. Computer simulation illustrates that the proposed control compares favorably with a recently published control approach.

  • PDF

Probability-annotated Ontology Model for Context Awareness in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경에서의 상황 인식을 위한 확률 확장 온톨로지 모델)

  • Jung, Heon-Man;Lee, Jung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.239-248
    • /
    • 2006
  • Current context-aware applications In ubiquitous computing environments make the assumption that the context they are dealing with is correct. However, in reality, both sensed and interpreted context informations are often uncertain or imperfect. In this paper, we propose a probability extension model to ontology-based model for rep resenting uncertain contexts and use Bayesian networks to resolve about uncertainty of context informations. The proposed model can support the development and operation of various context-aware services, which are required in the ubiquitous computing environment.

  • PDF

A Fault Detection System Design for Uncertain Fuzzy Systems

  • Yoo, Seog-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.107-112
    • /
    • 2005
  • This paper deals with a fault detection system design for uncertain nonlinear systems modelled as T-S fuzzy systems with the integral quadratic constraints. In order to generate a residual signal, we used a left coprime factorization of the T-S fuzzy system. From the filtered signal of the residual generator, the fault occurence can be detected effectively. A simulation study with nuclear steam generator level control system shows that the suggested method can be applied to detect the fault in actual applications.

  • PDF

A Bayesian Approach to PM Model with Random Maintenance Quality

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.689-696
    • /
    • 2007
  • This paper considers a Bayesian approach to determine an optimal PM policy with random maintenance quality. Thus, we assume that the quality of a PM action is a random variable following a probability distribution. When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal PM policy. Finally, the numerical examples are presented for illustrative purpose.

  • PDF

Optimal Pricing Policy under Uncertain Product Lifetimes (불확실한 제품 수명주기를 고려한 최적가격결정 모형에 관한 연구)

  • 이훈영;주기인
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.2
    • /
    • pp.23-31
    • /
    • 2000
  • Many studies in marketing and economics have attempted to model price and sales path under the dynamic diffusion process. Most of these models have been based on a fixed product lifetime. The current business climate requiring intensive development of new products however affects the diffusion of new products and their lifetime. Many products have not enjoyed the expected life cycle at the launching stage due to intense technical development competitive reactions, and financial problems. Most diffusion models however have not taken account of the lifetime uncertainty of new product. If the products do not last over the planning horizon set by those models. the optimal price derived from them could be futile. Therefore we had better take such lifetime uncertainty into consideration when developing diffusion models, In this paper we study the impact of uncertain product lifetime on its optimal pricing path in non-competitive market. We develop an optimal pricing model under uncertain product lifetimes and conduct a simulation study to investigate their effects on the optimal pricing and corresponding sales paths. The simulation study provides some interesting findings on optimal pricing policy under uncertain product lifetime. This study could be a stepping stone for the further extended study of optimal pricing strategy with uncertain product lifetime.

  • PDF

Imge segmentation algorithm using an extended fuzzy entropy (확장된 퍼지 엔트로피를 이용한 영상분할 알고리즘)

  • 박인규;진달복
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1390-1397
    • /
    • 1996
  • In this paper, in case of segmenting an image by a fuzzy entropy, an image segmentation algorithm is derived under an extended fuzzy entropy including the probabilistic including the probabilistic information in order to cover the toal uncertainty of information contained in fuzzy sets. By describing the image with fuzzysets, the total uncertainty of a fuzzy set consists of the uncertain information arising from its fuzziness and the uncertain information arising from the randomness in its ordinary set. To optimally segment all the boundary regions in the image, the total entropy function is computed by locally applving the fuzzy and Shannon entropies within the width of the fuzzy regions and the image is segmented withthe global maximum andlocal maximawhich correspond to the boundary regions. Comtional one by detecting theboundary regions more than 5 times.

  • PDF

Development of Fuzzy-Statistical Control Chart for Processing Uncertain Process Information (불명확한 공정정보 처리를 위한 퍼지-통계적 관리도의 개발)

  • 김경환;하성도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.75-80
    • /
    • 1998
  • Process information is known to have the continuous distribution in many manufacturing processes. Generalized p-chart has been developed for controlling processes by classifying the information characteristics into several groups. But it is improper to describe continuous processes with the classified process informal ion, which is based on the classical set concept. Fuzzy control chart, has been developed for the control of linguistic data, but it is also based on the dichotomous notion of classical set theory. In this paper, fuzzy sampling method is studied in order to process the uncertain data properly. The method is incorporated with the fuzzy control chart. Statistical characteristics of the fuzzy representative value are utilized to device the fuzzy-statistical control chart. The fuzzy-statistical control chart is compared with the generalized p-chart and both the sensitivity to the process information distribution change pared robustiness against the noise on the process information of the fuzzy-statistical control chart are shown to be superior.

  • PDF