• Title/Summary/Keyword: Uncertain Process

Search Result 331, Processing Time 0.024 seconds

Effects of Pre-service Teacher's Scaffolding in Environmental Camp about Climate Change (예비 교사의 스캐폴딩을 강조한 기후 변화 환경 캠프의 효과 분석)

  • Ju, Eun-Jeong;Lee, Jeong-A;Jang, Shin-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.1
    • /
    • pp.82-94
    • /
    • 2013
  • The purpose of this study was to investigate the process and the effect of pre-service teacher's scaffolding in environmental camp program about global climate change. For this study, developed the environmental camp program based pre-service teacher's scaffolding and applied to 78 $5^{th}$ students. We analyzed the role of pre-service teacher in the process of scaffolding. In the result, the pre-service teachers conducted cognitive scaffolding like as "Focus", "Hint", "Tell or Summarize" and "Technical Help". They carried out the emotional scaffolding like as "Create Cheerful Atmosphere", "Encourage", and "Help in Living". Teaching and learning about global climate change, the theme of the camp, was regarded uncertain and complex. So, pre-service teacher's scaffolding was effective to promote environmental literacy about climate change of primary students (<0.05). The student teachers understanded the characteristics of the children through emotionally close relationships. The primary students were learned easier about global climate change through cognitive and emotional scaffolding. They experienced environmental practice with communal living in camp.

A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding (원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

Robust Controls of a Galvanometer : A Feasibility Study

  • Park, Myoung-Soo;Kim, Young-Chol;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.94-98
    • /
    • 1999
  • Optical scanning systems use glavanometers to point the laser beam to the desired position on the workpiece. The angular speed of a galvanometer is typically controlled using Proportional+Integral+Derivative(PID) control algorithms. However, natural variations in the dynamics of different galvanometers due to manufacturing, aging, and environmental factors(i.e., process uncertainty) impose a hard limit on the bandwidth of the galvanometer control system. In general, the control bandwidth translates directly into efficiency of the system response. Since the optical scanning system must have rapid response, the higher control bandwidth is required. Auto-tuning PID algorithms have been accepted in this area since they could overcome some of the problems related to process uncertainty. However, when the galvanometer is attached to a larger mechanical system, the combined dynamics often exhibit resonances. It is well understood that PId algorithms may not have the capacity to increase the control bandwidth in the face of such resonances. This paper compares the achieable performance and robustness of a galvanometer control system using a PID controller tuned by the Ziegler-Nichols method and a controller designed by the Quantitative Feedback Theory(QFT) method. The results clearly indicate that-in contrast to PID designs-QFT can deliver a single, fixed controller which will supply high bandwidth design even when the dynamics is uncertain and includes mechanical resonances.

  • PDF

A Study of Construct Fuzzy Inference Network using Neural Logic Network

  • Lee, Jae-Deuk;Jeong, Hye-Jin;Kim, Hee-Suk;Lee, Malrey
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • This paper deals with the fuzzy modeling for the complex and uncertain nonlinear systems, in which conventional and mathematical models may fail to give satisfactory results. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper. The expert system which introduces fuzzy logic in order to process uncertainties is called fuzzy expert system. The fuzzy expert system, however, has a potential problem which may lead to inappropriate results due to the ignorance of some information by applying fuzzy logic in reasoning process in addition to the knowledge acquisition problem. In order to overcome these problems, We construct fuzzy inference network by extending the concept of reasoning network in this paper. In the fuzzy inference network, the propositions which form fuzzy rules are represented by nodes. And these nodes have the truth values representing the belief values of each proposition. The logical operators between propositions of rules are represented by links. And the traditional propagation rule is modified.

A Study of Risk Analysis on Apartment Reconstruction Projects (공동주택 재건축사업의 리스크 분석에 관한 연구)

  • Lee Lo-Na;Woo Kwang-Min;Lee Hak-Ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.232-235
    • /
    • 2004
  • The apartment reconstruction project is making some problems, such as delay of lack specialty, conflict between project owners and cost increasing etc. The enforcement process of project are very complicated, the term of project is long and too many project owners are participating. For this reasons. it is always in the face of uncertainty. To promote the reconstructing project successfully. we need to make risk management process to get rid of uncertain factors which occur in forwarding the reconstructing project This study has for its objects. First, suggest the best way of risk analysis to manage risk factors systematically and efficiently recognized in The Apartment reconstruction protect. Second, furnish basic data to build the risk managing system of The apartment reconstructing project.

  • PDF

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

A Study on the impact on the quality of hemming the number of hemming process (헤밍 공정의 횟수가 헤밍 품질에 미치는 영향에 관한 연구)

  • Shin, Na-Eun;Choi, Moon-Ho;Choi, Young-Deok;Choi, Hae-Un;Jang, Rae-Seong;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • In this study, it was investigated by comparing the experimental hemming by the 3 steps and 2 steps in order to stabilize the quality of the hemming process. In the experimental results, the three-step hemming superior to the two-step one and the dimensional stability of part that was made by the three-step on was high. When the second stage Hemming has been found that the deflection caused by the force to the wear of the punch becomes larger plane can be folded by the hemming crimping and crimp uncertain.

Performance Measurement Method and Case Study for BIM based Construction Simulation System (BIM기반의 건축시공시뮬레이션 시스템 성능분석 방법 및 사례연구)

  • Jun, Ki-Hyun;Yun, Seok-Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.15-23
    • /
    • 2013
  • Because that construction project is usually uncertain and the plan of it changes frequently, it is difficult to make a reliable and feasible plan for it. As the BIM technology is developed, we can simulate the future of the construction project visually and make more reliable plan. However, data production efficiency is not so high, it is used just for animation and presentation usage. Although, a lot of construction simulation systems are developed, it is difficult to measure performance of them. In this study, we defined the construction simulation work process and the scenarios to measure performance of them. The performance measurement method using simulation process scenario can make possible benchmark test of them.

Preparing a Construction Cash Flow Analysis Using Building Information Modeling (BIM) Technology

  • Kim, Hyunjoo;Grobler, Francois
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Construction is a competitive industry and successful contractors must be able to win bids to obtain projects. Cash flow analysis not only determines actual profit at the end of the project, but also estimates required cash resources or cash ballances at the end of every month. Cash flow analysis is important in managing a construction project; however, it requires extensive information that is not immediately available to the general contractor. Before contractors can perform cash flow analysis, they must first complete a series of pre-requisites such as the quantity take off, scheduling, and cost estimating, followed by accurate assessments of project costs incurred and billable progress made. Consequently, cash flow analysis is currently a lengthy, uncertain process. This paper suggests improved cash flow analysis can be developed using data extraction in Building Information Modeling (BIM). BIM models contain a wealth of information and tools have been developed to automate a series of process such as quantity takeoff, scheduling, and estimating. This paper describes a prototype tool to support BIM-based, automated cash flow analysis.

Hierarchical Evaluation of Flexibility in Production Systems

  • Tsuboner, Hitoshi;Ichimura, Tomotaka;Horikawa, Mitsuyoshi;Sugawara, Mitsumasa
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • This report examines the issue of designing an efficient production system by increasing several types of flexibility. Increasing manufacturing flexibility is a key strategy for efficiently improving market responsiveness in the face of uncertain market demand for final products. The manufacturing system comprises multiple plants, of which individual plants have multiple manufacturing lines that are designed to produce limited types of products in accordance with their size and materials. Imbalance in the workload occurs among plants as well as among manufacturing lines because of fluctuations in market demand for final products. Thereby, idleness of some manufacturing lines and longer lead times in some manufacturing lines occur as a result of the high workload. We clarify how these types of flexibility affect manufacturing performance by improving only one type of flexibility or by improving multiple types of flexibility simultaneously. The average lead time and the imbalance in workload are adopted as measures of manufacturing performance. Three types of manufacturing flexibility are interrelated: machine flexibility, routing flexibility, and process flexibility. Machine flexibility refers to the various types of operations that a machine can perform without requiring the prohibitive effort of switching from one order to another. Routing flexibility is the capability of processing a given set of part types using more than one line (alternative line) in the plant. Process flexibility results from being able to build different types of final products at the same plant.