• Title/Summary/Keyword: Uncertain Measure

Search Result 103, Processing Time 0.022 seconds

A Method for Access Control on Uncertain Context (불확정 상황정보 상에서의 접근제어 방식)

  • Kang, Woo-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.215-223
    • /
    • 2010
  • New information technologies make it easy to access and acquire information in various ways. However, It also enable powerful and various threat to system security. The prominent database technology challenging these threats is access control. Currently, to keep pace with the new paradigms, new extended access control methods are challenged. We study access control with uncertain context. With respect to access control, it is possible that there is a discrepancy between the syntactic phrase in security policies and that in queries, called semantic gap problem. In our semantic access control, we extract semantic implications from context tree and introduce the measure factor to calculate the degree of the discrepancy, which is used to control the exceed privileges.

Eigenstructure Assigned Sliding Mode Control for Uncertain System (불확실 시스템을 고유구조 지정 슬라이딩 모드 제어)

  • Chun, Kyung-Han;Kim, Ga-Gue;Jeon, Hea-Jin;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.799-805
    • /
    • 2001
  • In this paper, we propose eigenstructure assigned sliding mode control for mismatched uncertain system. Variable structure control has the sliding mode in which the system is robust against the uncertainty and the sliding motion depends upon the sliding surface. Therefore, the surface design is one of the important problems. Also in mismatched cases, the uncertainty may affect on the sliding motion and may cause unexpected instability of the system. Thus, that should be considered, too. For robust sliding mode against the mismatched uncertainty, we suggest the design method of the sliding surface using the eigenstructure assignment, define an index as the measure of the robustness which shows the size of affordable unstructured uncertainty, and present the computation method. And also we propose the controller which can ensure the sliding mode and prove the robust stability of the proposed controller by using Lyapunov method. Finally we show the appropriateness of the proposed scheme for the mismatched uncertainty via the example.

  • PDF

Design of Sliding Mode Controller for Uncertain Multivariable Systems in the absence of Structure Matching Conditions (정합 조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계)

  • Park, Gwi-Tae;Kim, Dong-Sik;Lim, Sung-Jun;Seo, Ho-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.670-677
    • /
    • 1991
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is, their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. In order to eliminate an influence over partial state variables due to unknown constant disturbances we perform the appropriate block-decomposition for a given system. Functional observers are introduced to estimate the unknown constant disturbances. The sliding mode controller is designed in such a way that the partial state variables in the state-space are directed towards switching surfaces and regulated to the origin asymptotically. Numerical examples are discussed as illustrations.

  • PDF

Decentralized Stabilization for Uncertain Discrete-Time Large-Scale Systems with Delays in Interconnections and Controller Gain Perturbations (제어기의 이득 섭동을 갖는 이산 시간지연 대규모 시스템을 위한 강인 비약성 제어기)

  • Park, Ju-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.8-17
    • /
    • 2002
  • This paper considers the problems of robust decentralized control for uncertain discrete-time large-scale systems with delays in interconnections and state feedback gain perturbations. Based on the Lyapunov method, the state feedback control design for robust stability is given in terms of solutions to a linear matrix inequality (LMI), and the measure of non-fragility in controller is presented. The solutions of the LMI can be easily obtained using efficient convex optimization techniques. A numerical example is included to illustrate the design procedures.

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.829-841
    • /
    • 2018
  • An experiment was conducted for the OECD/NEA ROSA-2 Project using the large-scale test facility (LSTF), which simulated a 17% hot leg intermediate-break loss-of-coolant accident in a pressurized water reactor (PWR). In the LSTF test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing, and water remaining occurred on the upper core plate in the upper plenum. Results of the uncertainty analysis with RELAP5/MOD3.3 code clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges. For studying the scaling problems to extrapolate thermal-hydraulic phenomena observed in scaled-down facilities, an experiment was performed for the OECD/NEA PKL-3 Project with the Primarkreislaufe Versuchsanlage (PKL), as a counterpart to a previous LSTF test. The LSTF test simulated a PWR 1% hot leg small-break loss-of-coolant accident with steam generator secondary-side depressurization as an accident management measure and nitrogen gas inflow. Some discrepancies appeared between the LSTF and PKL test results for the primary pressure, the core collapsed liquid level, and the cladding surface temperature probably due to effects of differences between the LSTF and the PKL in configuration, geometry, and volumetric size.

Incomplete Information Recognition Using Fuzzy Integrals Aggregation: With Application to Multiple Matchers for Image Verification

  • Kim, Seong H.;M. Kamel
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.28-31
    • /
    • 2003
  • In the present work, a main purpose is to propose a fuzzy integral-based aggregation framework to complementarily combine partial information due to lack of completeness. Based on Choquet integral (CI) viewed as monotone expectation, we take into account complementary, non-interactive, and substitutive aggregations of different sources of defective information. A CI-based system representing upper, conventional, and lower expectations is designed far handling three aggregation attitudes towards uncertain information. In particular, based on Choquet integrals for belief measure, probability measure, and plausibility measure, CI$\_$bi/-, CI$\_$pr/ and CI$\_$pl/-aggregator are constructed, respectively. To illustrate a validity of proposed aggregation framework, multiple matching systems are developed by combining three simple individual template-matching systems and tested under various image variations. Finally, compared to individual matchers as well as other traditional multiple matchers in terms of an accuracy rate, it is shown that a proposed CI-aggregator system, {CI$\_$bl/-aggregator, CI$\_$pl/-aggregator, Cl$\_$pl/-aggregator}, is likely to offer a potential framework for either enhancing completeness or for resolving conflict or for reducing uncertainty of partial information.

  • PDF

The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method (확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석)

  • Kim, Jun-Yeon;Jeong, Cheol-Yong;Lee, Seon-Yeong;Cheon, Chang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF

Reliability-based Shape Optimization Using Growth Strain Method (성장-변형률법을 이용한 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

The Relationship between Risk Taking, Impulsivity and Intolerance of Uncertainty (위험감수와 충동성 및 불확실성에 대한 인내력 부족의 관련성)

  • Sohn, Sung Yun;Kang, Jee In;Namkoong, Kee;Kim, Se Joo
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.3
    • /
    • pp.87-92
    • /
    • 2014
  • Objectives Risk taking has been implicated in the development of various psychiatric disorders. Previous studies have indicated that risk taking behavior is associated with high levels of impulsiveness. Risk taking entail uncertain situation that outcome probability is unknown. This study tested impulsivity, intolerance of uncertainty and risk taking behavior. Methods A total of 73 participants completed a test battery comprised of the UPPS-P scale as a psychometric measurement of five dimensions of impulsivity, Intolerance of Uncertainty Scale, and Balloon Analog Risk Task (BART) as a behavioral measure of risk taking. The Pearson correlation analysis was used. Results The sensation seeking factor was positively correlated with BART measure (r = 0.27, p = 0.02). Specifically, the relationship between sensation seeking and BART was significant in females. Conclusions Among the five factors of UPPS-P, only the sensation seeking factor predicts risk taking propensity.

Performance Measurement Method and Case Study for BIM based Construction Simulation System (BIM기반의 건축시공시뮬레이션 시스템 성능분석 방법 및 사례연구)

  • Jun, Ki-Hyun;Yun, Seok-Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.15-23
    • /
    • 2013
  • Because that construction project is usually uncertain and the plan of it changes frequently, it is difficult to make a reliable and feasible plan for it. As the BIM technology is developed, we can simulate the future of the construction project visually and make more reliable plan. However, data production efficiency is not so high, it is used just for animation and presentation usage. Although, a lot of construction simulation systems are developed, it is difficult to measure performance of them. In this study, we defined the construction simulation work process and the scenarios to measure performance of them. The performance measurement method using simulation process scenario can make possible benchmark test of them.